invt

INVT Medium and
Large-scale PLC

Programming Manual

SHENZHEN INVT ELECTRIC CO,, LTD.

INVT Medium and Large-Scale PLC Programming Manual Preface

Preface

Overview

Thank you for choosing our medium and large-scale PLC.

This manual contains the information necessary for using the medium and large-scale PLC. Please read this
manual carefully before use to fully understand the functions and performance of the product, and
complete system construction, which helps to give full play to the product's superior performance.

This manual is applicable to TM and TP series PLCs, but attention should be paid to the applicable scope of
some function instructions.

Target Audience

This manual is intended for personnel with professional knowledge of electrical engineering (e.g., qualified
electricians or personnel with equivalent knowledge).

Online Support

In addition to this manual, you can also obtain product information and technical support from our website.

Website: https://www.invt.com

If the product is ultimately used for military affairs or weapons manufacturing, please comply with the
export control regulations in the Forejgn Trade Law of the People's Republic of China, and complete related
export formalities if required.

Revision History

The Company reserves the right to continuously improve the product without prior notice.

Number Revision Description Version Release
Date
1 First release. V1.0 September
2024
® Added multi-core configuration instructions and notes
reminding users to add the related function block
libraries.
® Updated the title of section 6.17.2 IP and Time Instructions
5 of the TM Controller to include "cannot be placed under VL1 December
high-priority tasks such as EtherCAT". 2025
® Updated part of the content in section 7 Motion Control
Instructions, and added section 7.1.36 MC_SetOverride.
® Modified section 9 Pulse Output Instructions to 9 Pulse
Application Instructions and updated the related content.

https://www.invt.com.cn/

INVT Medium and Large-Scale PLC Programming Manual Contents

Contents

1 Program Structure and EXECULIONcccuveeeiiiriiiemmmeesssssssiiessmsesssns 1
1.1 ProOgram STrUCTUIE ..coouiieiiiriieeiteeite ettt s e st e st e e st e s bt e s bt e sseesabeesaseesabeesaseesaseesseesaseesnseesasaesnseesane 1

1.2 TASK ettt sttt ettt b e b bt e a e e a et et b s h e e h e e a e et et et e e b e e be e Rt eatea e et e benheebesheent et et eaee 1

1.3 Program EXECULION PrOCESSeiuerieriiriiieenieeieste st sttesitesteebesbesasessaesseessesssesssesssesssensaensasssessessesseenses 2

1.4 TaSK EXECULION TYPE..utiuiiieiiriiriieieritetetetestestesseseessessaessessessessessessesssensessensessessessesssessensensessessessessasssensanss 5

IR T 1= 1 (G o T YT SS 6

1.6 RUNNING Of MUILIPlE SUDPIrOZIamSeoveiriiieirieietet ettt ettt ettt be et enes 9

1.7 SiNGLE AXIS CONTIOL vttt ettt ettt et ettt et sb et et b st e b et et b et et s b b et sbe st enesbessenessens 11
1.7.1 Programming Instructions for Single AXis CONtIOl........ccuvevirireririrenieeseieeseeees et 11

1.7.2 Commonly Used MC Function Blocks for Single Axis CONtrol.........ceceveevuenirenenieenenieenenienenen 11

1.8 Cam SyNchronization CONTIOL.......ccieiirieriiniiniieceetetetest ettt st e st e tesbe s e sssesaessessessessessesssessensan 12
1.8.1 Cyclic Mode Of the Cam Tableccuvirieiririeiricieeereeee ettt ettt sa e b s e enan 13

1.8.2 Input Method of the Cam TabLec..ccveviiririiicecteceece et a et sre e nean 13

1.8.3 Data Structure of the Cam Table ..ottt eaes 14

1.8.4 Reference and Switching of Cam Tablesccoveciririeririnieirereeee e 15

1.9 Programming SUEEESTIONS ...c.couiriruiiieteierterteee sttt ettt sttt et e s b e s b et s st et e se e besaeebesnesne et eneen 15

2 EtherCAT Operation MeChaniSmcccccciieeeieiieneiieieennieinenecereenssecsensssesssnsssesssnsscsssnsssssssnssssssnssssssanee 17
2.1 EtherCAT Operation PriNCIPLE ..ccuicieeieeeeeeeee ettt ee st et e s e e s e se e aeeaesneessaessaensaensnns 17
2.1.1 Introduction to the EtherCAT ProtoCOL.....cceeeueriririenieirietetnierieteiente ettt ne 17
2.1.2WOrking COUNTET (WKC) ..c.veiruireeieierieieitrieteteieteite ettt et ese st b te s sesbe s b be st s besbeseesesbeneenenne 17

2.1.3 AAAreSSING MOGEcuiiuiiiiieienieeeete ettt ettt a e s bt ettt et et e s besbe et e st et e seesbesbeebeeneentenee 18

2. 1.4 DiSErIDULEA CLOCK ...veuveuiiiiieiriiietei ettt ettt ettt ettt sbe e sb et e s be e ne 22

2.2 EtherCAT ComMMUNICAtION MOGE.....couiviiiriiieiriiieieiciet ettt ettt ettt sttt ettt et be bbb beseenen 24
2.2.1 Cyclic Process Data COMMUNICAtION ...cuevueriiriiririieieteieniesieee ettt st sttt et st sbe s sae et e eae 25

2.2.2 Acyclic Mailbox Data COMMUNICAtIONccvevuiriierieiieieieriesiesee e eeere e ssestestee e ereessessessesresseeseessanes 27

2.3 EtherCAT State MaChiN@....coucirueieirieieireeetc ettt ettt ettt ettt ettt ettt et ettt e benbeneenen 29

2.4 EtherCAT Servo Drive Control Application ProtoColccueeeeeieeieceeeeeeeetecee e 30
2.4.1 EtherCAT-based CAN Application ProtoCol (COE)ccimimiminrirrirrrinieneneneeeeeereseessessessesseeseenns 30

2.4.2 Servo Drive Profiles According to IEC 61800-7-204 (SERCOS)c.ceerverererrererenienenenieneeenieneenenne 34

3 AXiS State MEChANISIM . ..ciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiisssisss 39
3.1 AXIS SEAtE TraNSITION .cueeuieiieieieiert ettt b sttt et et sa b s b s bt et e e b e b e be s b ese et e e e e 39

4 BasiCS Of Programmingccccciiiieenneesissosiiieesnmesssssssissssssssssssssssssssssessssssssssssssssssssssssssssnssssssssssssssnnesss 40
A L VAMADLE .ottt ettt st sttt et et b e e b bt et et e b et e b e s b e s b e e he e st e st et e beshesbeeaeententens 40
4.1.1Variable DEClarationc..coceeeieeerieienierese ettt ettt sttt e e st et 40

4.1.2 Data TY PO cuuttieieerieeeieeette et eett e st e sbeesbe e s bt e sbeesabaesbeesabaesssaesabaesbeesabae s sae e baesseesabaessaesaraessaenane 41
4.1.3VArADLE TYPE ettt ettt ettt e ettt b e s b b s at et et e besaesbeeaesae et et enee 48

4.1.4 Persistent Variable. ... ettt e s 48

5 Programming LANGUAEEccceviiiiiiiiiiisss 50
5.1 OVEIVIBW cnviinieeieeie et st et et et et e st e st e s bt e sbeesbesabesate s st e s bt e bt e b esabesabesate st enbesssesatesatesseenseensasabesasesasesaeenses 50

5.2 SEIUCTUIEA TEXE (ST) 1rviieeerieereeireeteereeeesteesteerteeteereeeseesteense e beeseessesssesssenseenseenseesseesseessenseeseensesnsesssenses 50
5.2.1 Introduction to the Structured Text Programming Languagecoeeeeerererereneeeseneeresveneenenne 50

5.2.2 Program EXECULION SEQUENCE....c.uiiiiriieieiieeteeteeitesitestt et e bt e teste st esaeesseessesstesatesaeesseessesnsesasens 51

5.2.3 EXPression EXECULION SEQUENCEccuuivuiirieiierierteeteseesteesieessesssesssesseesseessesssesssesssesssessesssesssessens 51

202512 (V1.1) i

INVT Medium and Large-Scale PLC Programming Manual Contents

5.2.4 INSTrUCtION STATEMENT c...eiiiieieeieeteteeee ettt ettt et e st e st e beesbesstesatesatesssessaesasasens 52
5.2.5 APPLICAtiON EXAMPLES..c.viiciieieeieeieceeseese ettt ee st et ste s te et e e e e s e e sse e sesssesssesnsesssesseesseessennsens 63

5.3 Ladder Diagram (LD) and FUNCtioN BLOCK (FBD)......cccevtrrierienienienienerietenieniesiesesessessessessessessessesssensens 68
5.3.1Introduction to Ladder Diagram and Function Block Diagram Programming Languages 68
5.3.2 Program EXECULION SEQUENCE....c..uiiiiiieeeeeerte ettt sttt sree s e s e sneenens 69
5.3.3 EXECULION CONLIOL.ccuiiiiiriiiiiriiiiiieienicsiese ettt ste st stesae st et et e b e saesbessessaesaessensessessessessssnsensenes 69
5.3.4 LINK ELEMENT ...ttt sttt sttt ettt s s se e b et e e sbe st e sbesaaesaensensessessessesssensensanes 70
5.3.5 APPLICAtiON EXAMPLES....viiiieiieieeteceertese ettt e ee st e teeste e te et e e aessaesae e se e sesssesnsesnsesseenseenseensens 81

5.4 INSEIUCHION LIST (IL) 1eevreiirieeiriieireieiteeeireeertee ettt e erteeereeeteeeareeeseeebeeesseeebeeesseensesesseenseseseesntesessesssesenseesnss 84
5.4.1 Introduction to the Instruction List Programming LangUageccceeeeeueruererenrenenenreneeenveneenenne 84
LT3 A W 8 =1 1= g =T o RSSO 85
5.4.3 0Peration INSEIUCTIONS ...ccvivieriirierteeere ettt ettt et et e st e st e saeesbeesbesstesutesasessnessaensasnsens 89
5.4.4 Function and FUNCLION BIOCKccuevuiriririiiiteienieseseseee sttt ste e sttt saesbesbesse s e ennens 95
5.4.5 APPLICAtiON EXAMPLES..c.viiiieieeieeteceeseece et ete et e st e e te e te et e s aesreesse e seesesseeentesseessaenseenseensens 97

5.5 Sequential FUNCLION Chart (SFC)....ccuiiiieriiieninieneseeteteieste sttt et e ste e sresressessessessassessessessnessenes 98
5.5.1 Introduction to the Sequential Function Chart Programming Language........ccccccevevverererverennenn 99
5.5.2 SFC SEIUCTUI@ ettt sttt e et e e st e e s st e e s b ee e s s staeesasseeessaseaessnnsaeesssaens 101

5.6 ContinUOUS FUNCEION CHAIt (CFC) c.uvviieiiiieicieectee ettt ettt ceteeetesesaeeenbeseareebessreeenbesenneenns 114
5.6.1 Continuous Function Chart Programming Language Structurecocceecevevireneneeeneneeenes 114
LTS 8 =1 1= 0 V=T o R 117
5.6.3 CFC CONFIGUIAtION w.eutiiiiiieieieeetet ettt ettt ettt ettt ettt b et b s snen 124

6 BasiC INSTrUCHIONS ...uuiiiiiiiinneiiiieniiieenmessssssiireesmesssssssstsssssssssssssssssssssssssssssssssssnsssssssssssssnnsssssssssssssns 125
6.1 COMPAriSON INSEIUCTIONS ..eiiiieiiieecite ettt sttt et e s sre e s sbe e ssbaessbaesssaessbaesssaesssaesssaassseeessaennns 125
6.1.1 Greater TNAN (GT) civeieeeiieeeeeteeceieeceteeeeee et e ceteeentesesteeesaeseebeeebeseesasesesesaeesesssasensesensseesesensneenss 125
B.1.2 LSS TRAN (LT) teeeteiiitriieieiicieeceteeceieeceteeeetreceteeceveeetesesvaeeseseesaeeabesesaeesesesasensesensseesesensssensssensesenss 125
6.1.3 Greater Than Or EQUAL TO (GE) c..ivuiiiieiieieeieieieieete et e et et et esteste e veeveessessesessesbessesbassnessessans 125
6.1.4 Less Than Or EQUAL TO (LE) ...ccecieririeereeeeteieniesiestesreeesseesestessessessessessessssssessessessessessessesssessens 126
6.1.5 EQUALTO (EQ) wververreruirtieeeeeierieiesiestesessesseeseessessessessessessessssssessessessessessessessesssessensessessassessesssessans 126
6.1.6 NOt EQUALTO (NE) 1evieteetieeieieiieiestestee e eteett et et estestestesbaeseeseessessebessessassessaessessessessessessessasssessensans 126

6.2 SELECTION INSTIUCTIONS....utiiiiiiicieeeeetetet ettt et et et st e s be st e sre e e et e b e stesbessessaessensassassassessesseeseensan 127
6.2.1 BiNary SEIECTION (SEL) cueiviierieieriisiieeseeeetetestessestesseesesseesessessessessessessessesssessensessessassessesssessans 127
6.2.2 MULLIPLEXET (MUX) 1.uvitieieeeieeieiieiesteeteeeetee e et et e stestesbestaeteeseessesbebessessasseesaessessessessassessessasssessensans 127
6.2.3 MAXIMUM (MAX) eviiitriieietecieeceite e ceteeeeeecetesesaeeestesesaaeeaessesseeasesssasesesesasensessnsssesssessseessssnsesenns 127
6.2.4 MINIMUIM (MIN) ..oiiiiiiieiieeecee ettt ereecre et e eee s e esbeeaeeraesteeereeeseebeenbeessesssesssesseesseensesssesssesssenseensen 128

8. 2.5 LIMIE (LIMIT) 1ot eee s e e e eeaeeeseaeeeseeseaesesesseaeesseasseseaseeseassaseaseaseeseaseaseessaseaseaseaneans 128

5.3 COUNTEI INSTIUCTIONS. ..cuiiiiiiiiiieiiesite sttt este et e et e st e st e s bt e steesaestesasesasesaeessaensesssesssesssesseessesnsesssesseenns 128
6.3.1 COUNLEI UP (CTU) 1itiitieiieiieiesieiestesteeesreereeeetestessestessessessaessessessassessessessesseessessessessessassessesssessans 128
6.3.2 COUNEEI DOWN (CTD) uriiuviieiiieeieteceteeteete et e ettt esteeteeateesteeseeebeebeenbeessesssesssesssessenseenseessessseseensenn 129
6.3.3 CouNter UP/DOWN (CTUD) ...cicieiirieriieresreeeetetestestestessessesseessessessessessessessessesssessessessessessassassassans 129

6.4 TIMEI INSTIUCTIONS ..eiiiieiieieeteeste sttt ettt et e st e s e e s be s steesteseesasesssesseasseessasssesssesssessesssesssesssesseenns 130
B.4.1 PULISE TIMEE (TP) 1otietieiiieeiete et eeteete et et ettt esteetseabeeateeseeebeenbeenbeessessbesssesseessenseenssessessseseenseen 130
6.4.2 ON-delay TIMEr (TON) cueciecieceriereseeeseee et et et e stestesree e eseesessessessessessessasseessessessessessessassesssessans 131
6.4.3 Off-delay TIMEr (TOF) ..cuicieieciecieriestiee sttt et et e e ste s e e e e e e s et e sessessessessasseessessesassessassassesssessans 131
6.4.4 REAI-IME CLOCK (RTC) uviiueieeeiereeeteeiecte ettt et et et et e et e st ebeenbeesbeesbesssesssessensesnssensesssenseenseen 132

6.5 Bit and Word LOIC INSErUCLIONSc.cvuirieiriiieirieieesiertet sttt sttt sttt sttt st et s bt e sbesaesaenens 133
6.5. 1 AND INSTIUCTION .eiuviiiiiiiiieeeeseesteeste e et ese et e e s saesteseaesteesteesbeessesssesssessesssesssesnsesssesssesseesesssens 133
6.5.2 OR INSEIUCHION cc.uvtiiiieeiiectecte ettt se e e e st e s sbe e s st e s baesebae s baesbaesbaeessaesssaessaessseesnsaeanes 133

202512 (V1.1) i

INVT Medium and Large-Scale PLC Programming Manual Contents

6.5.3 NOT INSEIUCTION .eeutiitiiiiiierteniteieeieete ettt ettt st sae e sttt ebe e b e sabesatesaeesbeesbesnsesasesasessaensesnsens 133
6.5.4 XOR INSEIUCHION ..eetiitieiecte ettt ettt ete s te st e e e ste s sae st e sre e s e e se e te et e essessaesseessesssesssesssesssesseessessens 133
6.5.5 SEEDOMINGANT (SR) c.vviiereiiiieiieiei ettt ettt cereeeete e eeteecstesceteeebeseesaeenbasessaeensesensseensesensseesesensaeenss 133
6.5.6 RESET DOMINGNT (RS) c.vvviiitiieeiei ettt ettt ettt estreceae s eeareebescetaeenbasesbaeebesensseenbesesneensesensneenns 134
6.5.7 Rising EAge DEteCtOr (R_TRIG)coivuerireirieirierieieesieteiesteteestesesessesesessessesessensesessensesessensesessen 134
6.5.8 Falling Edge Detector (F_TRIG)cocevtririerirrinieirienieieiesieteseesetesessetesessestesessetesessesesesseseseses 135

6.6 Bit/BYte FUNCLIONS ...veeuieiieieieieitisesest et estesteste s e see et estestestesbessessaessestensessassessessssnsensensensensessessesssensen 135
B.6. L EXTRACT ettt ettt e e e e e eree e e e e s e s eebaa e e e e e e s s asaaaaeeeessssssssaaaeessasasssaaaaeesessanssesnaessessensnrrens 135
B.6.2 PACK ..cueitieieeteteierte sttt sttt e e st st e st e st e et st et et e b e st e s be e s e s s e et et e b e s b e b e ebesaeeRe e R e et et e b e ebesbaeaeensentans 135
B.6.3 PUTBIT ..oueiieiieteieniesieste st et e stetestestessesteese st et estesbesbessessesssensessensessassessessssssensessensensessessassesssensons 135
B.6.4 UNPACK ...ttt e e s e s st e e e e e e s s et at e e e e e e s se s s s b aaaeessesanssaaaaeesessasseneaeseessensrsens 136

6.7 Bit SHift INSTIUCTIONS ...ttt sttt st ettt et e st s besae et et e b essesbassesssensenean 136
6.7.1 Bitwise Left-Shift (SHL) c.coueecierieierierinireetet ettt ettt s see e e e s e st e b e sbassasnnesnensans 136
6.7.2 Bitwise RIght-Shift (SHR) c..eveirieiiiieieire sttt et a s b s b s neenen 136
6.7.3 Bitwise Left-rotation (ROL) ..c...covvieeeiiiieiieiccreeceteeceteeceresceteectesceveeestesesseeetesesveeensesennseensessnsneenns 136
6.7.4 Bitwise Right-rotation (ROR).......cccceeviririeriririeinirieteesietei ettt sttt ssest e st e besaesesnen 137

6.8 Data Type ConVversion INSTIUCTIONS.couiririieieeieetereeeteste ettt see st e s sre e b smeesmeene 137
6.8.1 BOOL_TO _STYPED ..iiiiiiieieteeeecte et serte e st e e e siae e s e aa e e sssbaeeessabeesesasaeesessaaesssssaessnsssaessssseeanns 137
6.8.2 BYTE _TO _STYPES ...iiiitieiicttee sttt ettt sevee e st e s e site e s e aa e e sssaaeeessabaesesasaeesssseaesssseessnssnaessssseesnns 137
6.8.3WORD _TO ST Y PE™ ..ttt e e e e e e care e e e e e s s e arbaa e e e e s e e ssaaseeesessannsaraaaeeessennssens 137
6.8.4 DWORD _TO_STYPES.....uttiiiiteeiiiteeeeitee sttt e ssiteessiaeesesaae e sssvaeeesssseesesssaeesassesessssseesssssaessssseeanns 137
B.8. 5 INT _TO _STYPED ...ttt ettt eree e st e e e ste e s e aa e e s s bae e essabee s e aaaeesssseaeassssaessnssaaeesssseeanns 138
6.8.6 SINT _TO _STYPES ..ottt e e eeerr e e e e e e s etata e e e e e s s e s asbaaeeeesesenssaasaesessssnnssseaaeeeessassrens 138
B.8.7T DINT_TO _STYPES ..oeiiitiee ettt sttt et e e e sttt e s s aa e e sssaae e essabe e s esaaaeesesseaesssssaessnssnaesssssaeanns 138
B.8.8 UDINT _TO _STYPED . tteietteeeciteeeettessette e ssite e s sttt e s e aae e sssaaaesssaseesesasaeesssseaessssseesssssaeessssaeanns 138
6.8.9 REAL _TO _STYPES ittt e e e e ettt e e e e e e s e s st aaa e e e e e e s nsbaaseeeeessennssseaaesessennssens 138
6.8.10 STRING_TO _STYPESotiicieeeeciteeeectee ettt e s iteessteesestaeessaaeessssseesssssaeesssssaessssssessnsssessssseeanns 138
B.8. 1L TIME _TO_STYPES .ttt ettt eetee e st e e e s vte e s e aae s s s baeeessasee s e aaaeessssaeeasssseessnssaeesssseeanns 139
6.8.12 TOD _TO_STYPES ..ottt ccctttte e ee ettt e e e e e e e etataeeeeessesssbaaaeeeseeenssaasaesesssensssssaeesessensssens 139
6.8.13 DATE _TO _STYPED ..ttt ettt setee e et e e e s ite e s e aa e s ssaaeeessasaeeessaaeessssaaeassssnessnssaeessssseeanns 139
6.8.14 DT_TO _STYPES ...ttt ettt ettt ee e s evee e s tee e e s ate e s e aae e seaaeeesssaesesasaeesassaeessnsseessnsssasssssseeanns 139

6.9 Data ProCesSiNg INSTIUCTIONS ...covieiiiiirieiietteie ettt ettt ettt et e st e b e s be st e st e saeesbeesbeensesneene 139
B.9. 1 MOVEuecueeeeeeiereieniesteete st etestetestessessesreeseeseassassassessassassesssessessassessessassessesseessessensensessessassesssessans 139
6.9.2 HEXINASCI _TO_BYTE ...tiiiteeeieeeieeeeeecteeeteesteeeteeeseaeesseesssaessaesnsaesssasssaesssssnsaesnsessnssessssesssaennns 139
6.9.3 BYTE_TO_HEXINASCI ..ot eeiteeeectee ettt e ettt e eerree e e teeesetaeeeesabaeeeessaaesesaseaenssaeesesssasessseeanns 140
6.9.4 WORD_AS_STRING .eiiietiieieitee it ettt e seereeeesieeessvaee s e aaesssssaeessssseesesssaesssssssessssseessnsssssssssseeanns 140
6.10 ArithmEtiC INSEIUCHIONS .c..eiiiiieeiecie ettt ettt st e st e st e st e saeesae e be e besssesssesssesseesseessesssesssanns 140
B.L10.1 ADD...eitiiieeiiecccctttee ettt e e ee e e e e e e e e e bbb e e e e e e e et et aaeaeeeee bt aaaaaeeea e rraaaaeeeeeaarbaaraaeeeeeanrrrans 140
B.10.2 SUB...titeeeeeieteieie sttt et ste et e st e st st e e st e se et et et e st e et e e b e e s e e st et et e et e teebeereeseenaesse s e testeetaereesaantans 140

Lo G 1 U O SUIN 141
B.10.4 DIV ..ttt e e e crer e e e e e e e e bbb a e e e e e e e e bbbt e e e e e e ee et bttt aaeeeaarraaaaeeeeanarraaaaeeeeeeannrrans 141

Lo KRG 1 @ 1 ST 141
B.10.6 ABS ... e e e st a e e e et e e e et e e e e aaeeeaateeeartteeeaaaeeeabteeeartaeeaaraaaeearreaaans 141

Lo O 10] 2 PR SUUPRRRE 141

Lo 0 I 1 U SUUN 142
B.10.9 LOG...cuiiuieieeietesiestisteste et et e ste e s testestesteeseesa et et e s estessaeseesaessentas s et e teesesreeseesae st et e sesteeteeraessentans 142

L 00 N = PR SUURRRRE 142
202512 (V1.1) iii

INVT Medium and Large-Scale PLC Programming Manual Contents

B.L0.11 EXPT .eoueiiieiiieieniesiesiesie et estetessestesseseeesesseensessensessessessesssensensensensensessessesssensensensensessessassasssensons 142
B.10.12 SIN coitieteeeieietesterte st es e et e et et e et et estesteessese et et e s e st esbaesaesaesse st es b et e beebeesaessesaessetertenseetaereeraentans 142
B.10.13 COS..niiiiiteieteieniestese st et este s estestesseseeesesstessassessassesseesesssessessensensessessesseeseensensentensessessasneessensans 143
B.10.14 TAN cteiietetetetentesteste st et este s estestesseseeeses st essassensessessessesssessensensensessessesseessessessensensessessessesssensans 143
B.10.15 ASIN .eeteeeieeieteter e sttt et et et e e te st e st esteeteesa et et et e beebae b e e s e e st et et e bebeereeraersenaesbe s e tenreetaereesaentans 143
B.10.16 ACOS....uiiueeieteieriestese st et este st estestessesteese st essessessessessessesssessestensensesessesseessensensensensessessassesssensans 143
B.10.17 ATAN .etieieetetetertestese st et este s estestessesteesesseessessessessessessesssensessensensensessessesssessensensensessessessesssensens 143
B.10.18 RAD/DEG......coticieciisteeieeeeerestetestestes e steeseeseetesessassessaesaessessessessessessasssssasssassessessessessessassessenseans 144
B.10.19 SIZEOFiiiiieieniesieeiesieetestetestestesseste et st et estessessessessesssensessensessessessessesssensensensensessessassesssensons 144
6.11 Date and TimMe INSEIUCHIONSivirerieteieteiere ettt ettt st st st e st et e st e stesbesbesseessessessessessessesssensensan 144
6.11.1 SEtDATEANATIME...cuei e cieeeeceecteee ettt e ste et e st e s e e s e e te e be et e essessaessaessessesnsesssesssesseenseeseens 144
6.11.2 GEtDAtEANATIME ..iviiuirieeieieieriestese st ettt e st et esbesteete s e et et esbessessessesseessessessensensessessasseessensons 144
6.12 STring FUNCLION INSTIUCTIONS. ..cviitiiiiiiiiieteieterttece ettt ettt et sn et 145
B.12.1 LEN coeitetieteeietetete sttt et et et et e st e st e teeteeteete et et et e sbeebaebeeseesbe b et et e beebeeraessensesbetenbeereetaeraesaantans 145
B.12.2 LEFT .uitieieeeieieiesiesteee st et estetessestessesressesseessassesessassassesssessessansansensansesseeseessessensensessessessesssessans 145
B.12.3 RIGHT ..eueiieiieteierie sttt et et e e te st e s testeese st et et e b e sbasseesesseessessassassessassesseeseessassensensessessassesssessans 145
B.12.4 MID ..ottt ettt et et e et e st e st e beebeete e st et et et e e beebaebsesa e st et e be et e beebeereestenaerbeterbeebeetaereesaentans 145
B.12.5 CONGCATetiieteterte sttt st et e ste e s testessesteese s e ess et e b esbesseesessaessessassansassansesseeseessessensensessessassesseessans 146
B.12.6 INSERTccueiieteieriesteseseetestetessestesseseeesesseessestessessessassesssessessassassessessessesseessessensensessessessesssessans 146
B.12.7 DELETE c.ueiuieieteteitestee e et et e ste e te st e teeteeteese et e b e besbeebassaesaessassesbessessasseasaassassassensessessessanssesaassans 146
B.12.8 REPLACE.......iiteieriisiieieseetestetestestestesteese st et estessessessessesssessessassessessessessessesssessensensessessassesseessans 147
B.12.9 FIND ..c.ueiuieieeietenieniesteseseetestetestestessesteesesseessassessessessessesssessessansessessassessesseessessensensessessessesssessans 147
6.13 Address Operation INStIUCLIONSccveeiereccicieeee et e et see e e e te e be e e s e e s s e s reesseessesneesneens 147
B.13. 1 ADR/ M ettt sttt et et e sttt s et sttt et et b e e b e e be e s e e Rt e Rt et et e e A e b e beere e st eRee st et e beeteeteereestentans 147
B.13.2 BITADR ...oeeeieieieriesiesteseeeitestetestestesseseeesesseessestessessassessesssessessessansessensessesssessessensensessessessesseessans 148
6.14 File Operation INSTIUCLIONS ..oviicvieciecieceesteecteetee ettt e ste e re e te st e s e e s se e se e be s aeessessaessaeseensesnsennsenns 148
B.14.1 OVEIVIEW ..eeuiiiierieeieiiesitesteseeseeeseesessesseessesssesssesssesssesssessesssesssesssesssessesssesssesssesseesssensesssesssens 148
6.14.2 INPUL AN OULPUL c.vectietieeieiecieieseseee sttt ste s e e e s e et et e b e stesbesbessaesaessessessessessassessesssessans 148
6.14.3 LoAd FIleS (flleS_lOAd)...c.uiiiiireiirieteetececettcce ettt ettt et et ebe et s aeeeaeeeaseateeseseaseesseseenseen 148
6.14.4 COPY FileS (FIleS_COPY).uticiirierririiriieireeeetestestessestessesesssessessessessessessessessssssessessessessessessesssessans 149
6.14.5 Delete Files (DEIETE_FIle).....cueeireeireereeeeeeece ettt et este e b e ebe e e e s e e ebeesseesseerneerneesaenseensenn 149
6.14.6 WIite Files (WIITE_FIlE)..cviieiereierieteeeeeeeete ettt ettt ettt et et aeeeaeeeteeaveeseeeaseessebeenseen 149
5. 15 REGUIALOIS ...ttt sttt b ettt sttt b et et s b st et sb et et sbe st et st et et ebestennenens 153
B.15.1 PD coieiteeieeieeietenteste sttt et et et e e s te st et e st e st e st et et et e st e e be e b e e Rt e Rt et e b e et e beereereeReeRae st et e beeteereesaesteneans 153
B.15.2 PID c.uviteeteeteeieteeteete sttt et et et e e st et et eeteete et et et e b e e b e e baebaeta e st et et e ebeebeebeeraetsenserbebebeebeetaersessensans 154
B.15.3 PID_FIXCYCLE ..outiotietieteeieetesteiestestee e steese et estestessestestessesssessessessassessassessessesssessensessessessessesssessans 155
6.16 BCD CONVEISION INSEIUCTIONS ..eiuviiiiiiesiesieesieeieeieetesteseestesstesstesesesssesseesseessesssesssesssessesssesssesssesssenns 155
B.16.1 BCD_TO_INT curicteeiietieieeteeierteitesteetee e eteeseeseestessessesbeeseessessessessessessessassseseessessessessessessessasssessensans 155
B.16.2 INT_TO_BECD ..uveieiectieieeteeereietestestes e steeseeseesessessessessessasssessessassessessassessesseensessessessessassassasssessans 156
6.17 SYSLEM INSTIUCTIONS ..cuvveiiiciiiieiiectesteetese et eteete st e st e s bt s stesssesseesanesssesseesseessesssesssesssesseessesssesssesssenns 156
6.17.1 PLC Fault Diagnosis INSTIUCTIONS ...ccuevuiririeiiienierienieeeetetestesie sttt et b e ste s sbesie s e eanensens 156
6.17.2 IP and Time Instructions of the TM CONtrollerccvevecierierininiececeeeeeesresese e e nenens 157
6.17.3 IP and Time Instructions of the TP CONtroller.......cceeeevecienienesececeseeeeeees et eaenens 158
5.18 SiZNAl GENEIALON ..c..euieiieiieieieniesieee ettt sttt st st et e st et st e s bt s a e sat et et et esbesbesbesaeententensensebessesseensensen 158
B.18.1 BLINK ..ccueeueeeiereiestistestesteetestetestestessestesseesaessessessessessessesssessensessessessassessesseessessensensessessassesseesans 158
6.18.2 FREQ_MEASURE......cuieieteeietetestestestesteereestestestessessessessesssessessessessessassessesseessessessessessessessesssessans 159
B.18.3 GENceieeeticieietee ettt ettt ettt e ve et et et et et e s beebeeteera et et e beeheebeebeebaerseaberbebebeeheeraersersensans 159

202512 (V1.1) iv

INVT Medium and Large-Scale PLC Programming Manual Contents

6.19 Auxiliary Mathematical FUNCLION BLOCKSccoveririeiiieieniinienentetentesie st siese et et siesaessessesssesenees 161
B.10. 1 DERIVATIVE ..ttt sttt e e sttt e e e e s e s s ataaae e e s e s sseassbaaaeessesesnssaasaeessssanssssnaeesssssnssssens 161
B.19.2 INTEGRAL ...ttt ettt ettt ettt e s etae e st e e e s abe e s s aba e e sss bt e e essbaesesssaaesnsseaeasssseessssssnesnssseeanns 162
B.19.3 LIN_TRAFO ..eetieiiiteeieite ettt st eesitt e s etae e s be e e e saae e s s aaae e s sbaeeesssseesesssaeessssesessssseeessssseesssseeeanns 162
6.10.4 STATISTICS _INT ceteeieiieeciteee et eeecrttree e e e e seertree e e e e e s baraeeeeessssssssaaaeessesssnssassaessesssnssssnaseessssnssssens 163
6.19.5 STATISTICS_REAL ..c.veiuiriieiieieienieniesieseeetetetestessessessessesssessessensessessessessessssssessensessessassassssssensons 163
B.19.6 VARIANCEoveieeiiriieieetetenteiestestes e steeseetestessessessessessesssessessensensessessessesssensensensensessessessesssensens 163

6.20 Operation FUNCLION BIOCKS......iicuiiiieiectectececteeeete ettt st e s ste e ae e ae e e e s e e sreesreessesnsasnnans 164
6.20.1 CHARCURVEotiiirtieieeteteteie e stestestesse st et essessessessessesssensessensessessessessssssensensensensessessassesssensons 164
5.20.2 RAMPL_INT utiteieriisteeestetestetestestessesteese st et essessessessessesssensessensensansessessesssessensensensessessassesssensons 165
6.20.3 RAMP _REAL ...ttt ettt s e s eere e e e e e s st ae e e e e s seeassbaaaeessessassaasaeesesssnsssrnaeessesanssrens 165

6.21 ANALOZ ValUE PrOCESSING ..cveuerviieirieieiirierteertetet ettt ettt et sbe st et sbe st et sbeste e sbesae st ebessenaesesseneesens 165
B.21. 1 HYSTERESISvotiiisiieieeiteteteiestestesteste et et et estessessestessesssessessensessessessessssssensensensensessessassesssensons 165
B.21.2 LIMITALARM ...ttt ettt s eecttee e e e s e e eetat e e e e e e e s aaaa e e e e e e ssesassbaaaeesssessnssaasaeesessannsssnaaeessssasssens 166

T Motion CoNtrol INSErUCLIONSuciiiiieemueiiiieniiieemmeesssssssiieesmsesssnssssssssssssans 167

7.1 SiNGLE AXIS INSTIUCTIONS ..ttt sttt ettt ettt et et be st et sbe st et s bt et ebeste e ebesseneenens 167
[O 1 (O 20 1LY <] TR 167
T 12 MO _HAI ittt ettt re et e s e e s te e be e be e b e etaeeteeebeenbaensaesseessesssesssenseensesssesssenseenseensenn 168
T 1.3 MO _HOMEu ettt ettt sttt e et e s at e s bt e s bt e sabeessaesbaesssaesaseessaesaseessaesaseessseenane 169
T. 1.4 MC_MOVEADSOIULE c.ceveieeeeeeeeee ettt ettt ettt e e e esatteeeeeseesasssaeaeessesssssaateesssssesssesteeessssensssees 172
7.1.5 MC_ACCElEratioNPrOfile.....cvicieiiiiriieisieeeetetertese sttt s sre e e e be st e besbesbessaesnassans 174
T.1.6 MC_MOVEAAAITIVE ...vivieeeeeeeieieiesiesieeeseeee et et este st e stestessesseesaestessessessessessasssessessessensessessessesssessans 176
T. 1.7 MC_MOVERELATIVE eevieieeeeeeeeeeeeeetetee ettt ettt e e e e satteeeeeseessssbaeaeessesssssaaseesssssesssssteeessssensssees 179
7.1.8 MC_MOVESUPEITMPOSETeviririiiiniiniesieetetetesiestestessessesssesessessessessessessessesssessensessessessessasssessens 181
T.1.9 MC_MOVEVELOCITY veverveerereeeienieiesienieseseeeeeetestessessessessesseessessessessessessessessssssessessessessessessesssesans 184
T.1.10 MC _ P OSTEIONPIOTIIO ettt ettt e e et e e e e eeeses e eeeeateeeesaeesesseeessansteesansseeesaeeesann 186
7.1.11 MC_ReEadACTUAIPOSITIONccveiiriiriieesieetetetesteste st e e e et ste st e sresbesveseeeseesaessessessessessasseessassans 188
7.1.12 MC_ReadBOOIPAramMELter.....c.ccueviiriierireeeeteiestestestesseeseeseesessessessessessessessssssessensensessessessasssessans 189
T.1.13 MC _ REAUAXISEITON ceveieeeeeeeeeeeieeeeeetetee e eeeeeettteeeeesesssearteeeseseessssaaaeessessssssasseesssssssssesteeesssssnsnssene 190
T.1.14 MC_REAASTATUS ..evievieeeeeieiieiieiesiesteeresreeseetetestessessestessesssessessessessessessessassesssessensessessessessasssessans 191
7.1.15 MC_REAAPAIAMELET ...ueveieieieieriesieeesreeeeetetestestestesteesesssessessessessessessessasssessessansensessessessesssessans 193
0 T S (O =TT =] U UUURRPRE 194
7117 MC_SEOP et se et ess s s s s ssa s essssasssasssessassessaens 196
T.1.18 MC_VElOCIYPIOFIlE c.vecveeieiieieierieseee sttt ettt sttt et e stesbesvesreesaesaesse s e bessassesseessasnans 197
T.1.19 MC _WritEBOOIPAramMELEL veeveiiieeeeeeeteee ettt eeeerrtee et e s eesssbaeeeessesssssseateesssssssssstesesssssssssees 199
7.1.20 MC_WIFItEPAramMETEN ..civuiieeieieeieeieeteete st e st e stesste st e st e s e e steesbeesbasssasssesseessesssesssesssesssenseesesssens 201
T.1.21 MC_ADOIETIIZEON .ottt sttt ettt sb e st s et et e st st e s be s bt sae et et e b et e besbeebe e e eneennens 202
7.1.22 MC_REAAACTUAITONGUE...c.utiieieieieeiesitetet ettt ste st et st et e st et e stesbesbesaeestesaesessenbessassasasensensans 203
7.1.23 MC_REAAACLUAIVELOCITY ..evvveveeieeieeieetestere et st st et esveestesaessa e s e e saessaesseessnessnansnassesssens 205
T.1.24 MC_SEEIPOSITION 1.veiiiriiiieceeseesieesieete et et seestesste st e st e steesteebeesbesssessaesseessesssesssesssesssesseensesssens 206
T.1.25 MC _TOUCKHPIODE ceeetieieeeeeeee ettt ettt et e e eesarteeeseseesssssaaaeesseesssssasteesssssessestesessssennsssene 207
7.1.26 SMC_MOVECONTINUOUSADSOIULE. .. .eitirieeiiereeie ettt ereete st s e e sveesaeeseessaesanessnasseensens 209
7.1.27 SMC_MOVECONTINUOUSREIATIVEviireeiertiereeiesie ettt et tesaeseesaeesaesaessnesanesaeasseensens 211
T.128 MO _JOZ . uuiiiiiiiiiiiiieeite st et s st s et st s bt s et sesae s bt e ssaesabeessaesbaessaesaseessaesaseesneesabeesnaenane 213
T 129 MC_INCR ettt ettt ettt et esbeebe et e eaeeebeeebe e beeabeenseessesssebseseenseesseessenseenseensenn 215
7.1.30 SMC3_PErSISTPOSITION ..uviruiieiieiiieiieiertesteee et sstesrteste s e eseeesbeeseesaesssesseessesssesssesssesssesseessesssens 217
7.1.31 SMC3_PersistPoSitioNSINGIETUIN c..c.erviiiiiiieieieseseeeetetet ettt eaeenens 219

202512 (V1.1) v

INVT Medium and Large-Scale PLC Programming Manual Contents

7.1.32 SMC3_PersistPOSItIONLOZICAL ..ccueririririiieierieniesiesese ettt seeee et e stessesbesbesbessessnensens 220
T.1.33 SMC_HOMING ettt ettt ettt ettt ettt s s st et et et e s bessesesbensesasbensesessensenaesensensssn 222
7.1.34 SMC_SetCoNtrollerMOde. .. c.ueviriiriiririeeteteteniese st see ettt e ste st s e sbeseeesesssessessessessessasssessansans 227
7.1.35 SMC_SEITONQUE c..uutieiieriieeteeiteette ettt e seite et esertesbe e sestesbeessaessaessaesaseessaesaseessssesseesssnenane 229
T.1.30 MO _ SO OVEITIAC .eeiiieieeeeeeeeeeeeeeeeteeteeeeeeeeserreeeeessesssarteeeeesssssssaeseesssssssssessessssssssssssesesssssnssssees 230

7.2 Master-slave AXiS INSTIUCTIONS.cviiiiieriiieiereseeeet ettt sttt et et e st e stesbesbessee s et essessessessesssensensan 231
T. 2.1 MC_CAMIN ciitiiiieiiniisienestetestetessestessesteese st essessensessessessesssensessensensensessessesssensensensensessessessesssensons 231
0 AV L O OF=] 1 1 [o 10 | TR 239
7.2.3MC_CamTableSELECE ..couirieieieierieriere ettt sttt ettt s e s e see e st e e essessesbessassasnnensansans 240
T.2.4 MC_GRANN ettt ettt st ettt e s bt e s bt e s bt e ssaesbae s saesaseessaesaseesseesasaesseesane 242
RS X Y O CT<F=Y O 10 | R 244
T.2.6 MC_GRANMNPOS ...ttt sttt sttt s bt s e e s bt e s seesbe e sntesneesnnesaseesnnenane 245
T.2.7 MC_PRASING c.eveveiiriiriieestetestete e steseste st et et essessessessessesssessessensessessessessssssessensensensessessessesssensons 250

8 ComMMUNICAtION INSTIUCHIONS ...cciiiiiiieeeiiiiiiiiieineniiieetiieeeneeesissssseeeennessssssssssssnnssssssssssssssnsesssssssssanns 252
8.1 Serial Fre@pOrt INSIIUCLIONS ..cviiiveeieieieieieste sttt sie e te e e see e e et et e stesbesbasseesaessessassassessesssessensan 252
811 INSTIUCTION LiSt.uuiiriiiieiiiiiierieneenieeieetestestt e st estesstestesaeesteesteebeensesssesssesseesseessesssesssesssensaensessens 252
8.1.2 ICP_Serial _ComM_NCOM aueiiiiiiiiiieeieieee ettt tee et e s eesssbaeeeessessssssasseessssssssssstesesssssnssssees 252
8.1.3 ICP_Serial_COMM_REAMcovveiiriiriieiesieeteteterteste e st e se et este st e ssestesresseesaessessessessessessassnsssensans 253
8.1.4 ICP_Serial_COmMM_WIIE ..cioiirieriirieriieeseeeetestestestestesree e seeseseessessessessesseessessessensessessessessesseessans 254

8.2 TCP Freeport CommuNiCation INStrUCTIONS.....ccciiiiieriieirieeciee st scieesste st e s e e sreessaaessreesssaessbaessaaasane 256
8. 2.1 INSTIUCTION LiSt.uuiiiueiiieiiiirierientenieerieetestest et estesste st e saeesaeesteesbessbesssesssessesssesssasssesssesssenseensesnsens 257
8.2.2 ICP_TCP_COMM_ClIENT...ttiiiieiirieriieireeeetetestesestestee e sseeseseessessessessessessssssessessessessessessesssessens 257
8.2.3 ICP_TCP_COMMI WL ecueiieiieiectesteeeeteee et et et et esteetee e ese et et e besbesbesbessaessessessessessessessasssessessans 258
8.2.4 ICP_TCP_COMM_REAUeiiiieiiriiniieisteetetetestestestestee e sseeseseessessessessesseesasssessassessessessessesssessans 259
8.2.5 ICP_TCP _COMIM_SEIVEN ..utieutiiiteeieeriteesttesstessrtessutessseessseesseesssaesasaessseesseessssessseessseessseesssnesane 260
8.2.6 ICP_TCP_COMM_CONNECT..ciiitttiieiieiiiiiieeeeeeeetteeee e e eeeeerareeseeeeteasaseseeeessssaseesssssssssassssssssssssnnns 261

8.3 UDP Freeport Communication INStrUCTIONSccvevvveriieriiiniereiniesie st seesieesieesreeaesnessesaeeseeessesssessnenes 262
8.3 1 INSTIUCTION LiSt.uuiiriiiriiiiiiiierieneeneesieetestestes e esiesstestesaeestsesseesbeensasssasssessesssesssesssesssesssensaensesssens 262
8.3.2 ICP_UDP_COMM_SENG ...etiuiiieieeieeieeteereeteetetestestesteetesseessessessessessessassssssessessessessessessessassssssesens 263
8.3.3 ICP_UDP_COMM_RECEIVEeiiieiieieeieetenienieesieesiesstesisesssesseesseessesssesssessesssesssesssesssesssensssssesssens 264

9 Pulse ApPlication INSTrUCLIONSciieueiiieeneieiieneieiieneieeiennscereensncerssnscesensssesssnsssssssnssssssnsssssssnssseses 266
9.1 HSIO Task CONFIZUIAtION ..veveeiriiieirieieeeieie sttt stest e ste st et sbe st e st e ste e st essesesbessensssassansesensansasens 266
9.2 ENC Axis Control Pulse Counting INStrUCLIONSc.coevveirienteririenieiniertetsestee ettt sveseeneevesaeseenens 266
9.2.1 INSTIUCTION LiSt.uuiiruiiriiiiiiiiierieneeneerieetesitesteseestesstessesesesssessesssesnsesssesssessesssesssesssesssesssenseessesssens 266

1 I A = [O 000 18 1 1 (=T TSR 267
0.2. 3 ENC_COUNTEIRESET ...ttt sttt ettt st e s be e s se e s sbe e sseesaseessanesseessaesane 269
0.2.4 ENC_COUNTEIPIESEE..cuetiiieecteeteecte sttt sttt sttt s e s s e s sba e sssaesbeessaesaseesssnesasaesssnenane 269

0. 2.5 ENC _COUNTEIPIODE ottt ettt ettt et e e ee et teeeeeseessssaaaeessessssssasteesssssssssestaseesssenssnsene 271

9. 2.6 ENC_SEEUNIT c.vetiiiiiicieeeeeetestetestest e svee et e s et et s teste e e esa e s et e b e ssessassessaesaensessessessessassassesssessans 272
9.2.7 ENC_SetLineROtatiONMOUE......cicieiieieriertereeeeie sttt steeste et e sae s e e s e e saesssesssessnessnesseessesssens 273
9.2.8 ENC_COMPAIESINGLE ..ottt ettt et st sat et et et et st s b sat e e e e e b estenbessessasnaensensans 274
0.2. 0 ENC _COMPArESTEP ..ceiuieicuieeiteeiieeittesitesstessrtessreesssaessseessseesseesssaesssaesssaessseessseessseessssessseesssaesnn 276
0.2.10 ENC_COMPATEAITAY c..utireuieereerrreerrtersteesreessstessseessssessseessseesssesssssesssassssaessseesssaessseessssesssaesssaesn 279

9.3 MC AXiS CONTIOL (PUISE OULPUL) c.euveuieteieeieieieteteieeetesteestestesesteste e steste e ssestesessessesessassassssessassesessassasens 281
9.3 1 INSTIUCTION LiSt.uuiiiueirieiiiiiierieneeseesieestestesee st sstessaestesesesseesseesseessesssesssessesssesssesssesssesssesseensesssens 281
0.3 2 MC_HOME_P ettt sttt s st e et s e e st e s bt e ssae e s st e sabaessae s baessaesaseessaesaseessssessseesssnenane 282
0.3.3 MC_MOVEFEEA P eeeiieeeeeeeeeee ettt ettt eeeet ettt e e e eeseabteeeesseesssssaaaeessessssssaateesssssssssesteeessssensnssene 290

202512 (V1.1) vi

INVT Medium and Large-Scale PLC Programming Manual Contents

9.4 PWM (PULSE OULPUL) .evteiteiteieieniesitetetetetesteste st steset et essessessesbessesseessensensessessessesssensensensessessessessssnsensen 295
0.4, L INSEIUCKION LiST..uuiiiiiieiiieiiieeiteiiteeste st e ssee st e et e sstaessse e ssaaesbeesssaesssaesssaesseessssessseessssessseesssaesnne 295

.42 HSIO _PWM ...ttt ettt ettt e ettt e s s vae e s be e e s s abe e s e bt e e sssbaaeessbaasessaeesnssaaeesssseessssesaesnssseeanns 295

10 FAUIL COUES...uiiiiirnnnniiinniiirenmnssssssiinsesssnssssssssssssssnnessssssss 297
10.1 SMC_ERROR Fault Codes (General Error Information for 402 AXiS)c.ceveeviereeeeenreenreenreenneereeeeneenes 297
10.2 PLC Error Code Table (for TM and TP SEriES PLES) ..ccvvieviiiieecreecreeeteecteeeteeereeeneeereeenseeensesensneenns 303

202512 (V1.1) vii

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

1 Program Structure and Execution

1.1 Program Structure

The software model is represented by a hierarchical structure and describes basic software elements and
their relationships, with each layer implying many characteristics of the layers below it. These software
elements include devices, applications, tasks, global variables, access paths, and application objects. Their
internal structure is shown in Figure 1-1. The software model is consistent with that specified in the IEC
61131-3 standard.

Figure 1-1 Program Hierarchy

Device
Application Application
‘ Task 1 ‘ ‘ Task 2 ‘ ‘ Task 3 ‘ Task 4 ‘
Program\ rogram 2 Proyﬂ(SAogram 4
R /|
FB1 FB2 FB1 FB2
Global and direct address variables

Access path

A

\i

Communication function

1.2 Task

A program can be written in different programming languages. A typical program consists of many
interconnected function blocks that can exchange data with each other. The execution of different parts of a
program is controlled by "tasks". Once a "task" is configured, a series of programs or function blocks can be
executed periodically or triggered by a specific event.

The "Task Manager" tab in the device tree can be used to control the execution of other subprograms within

the project, in addition to the specific PLC_PRG program. A task is used to define the properties of a program
organization unit at runtime. It is an execution control element with the calling ability. Multiple tasks can be

created in a task configuration, and multiple program organization units can be called in a task. Once a task

is set up, it can control the program's cyclic execution or start execution through a specific event trigger.

In the task configuration, a task is defined with a name, priority, and startup type. The startup type can be
defined by time (periodic, random) or by an internal or external trigger task time, for example, using a rising
edge of a Boolean global variable or a specific event in the system. For each task, you can set a series of
programs that are started by the task. If the task is executed in the current cycle, these programs will be
processed within the duration of one cycle. The combination of priority and conditions will determine the
task execution timing. The Task Configuration interface is shown in Figure 1-2.

202512 (V1.1) 1

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

Figure 1-2 Task Configuration Interface

o Add Call X Remove Call [Change Call e Up " Open POU
»ou Commest
& rou

Programmers must follow the following rules:

® The maximum number of cyclic tasks is 100, the maximum number of freewheeling tasks is 100, and the
maximum number of event-triggered tasks is 100.

® Dependingon the target system, PLC_PRG may be executed in any case as a free program without
being manually inserted into the Task Configuration.

® Processing and calling programs are executed in a top-down sequence within the Task Editor.

1.3 Program Execution Process

The figure below describes in detail the complete process of executing a program inside the PLC, which
mainly consists of three parts: input sampling, program execution, and output refreshing.

Figure 1-3 Controller Execution Process

Read input 4
1. Input
A\ 4 sampling
Image register
Y
A
‘ Task 1 2. Program
Task 2 execution
v v
. A
Image register
3. Output
A\ 4 refresh
Write output
] !

B |nputsampling

At the beginning of each scan cycle, the PLC detects the status of the input device (switches, buttons, etc.)
and writes the status into the input image register. During the program execution stage, the operating
system reads data from the input image register to execute the program. It is important to note that input
refreshing only occurs at the beginning of the scan cycle. During the scan, even if the output state changes,
the input state will not change.

B Program execution

During the program execution stage of the scan cycle, the PLC reads the status and data from the input

202512 (V1.1) 2

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

image register or the output image register, and performs logical and arithmetic operations according to the
instructions. The results of the operations are stored in the corresponding cells in the output image register.
During this stage, only the content in the input image register remains unchanged, while the content in
other image registers will change with the program execution.

B Qutput refreshing

The output refreshing stage can also be called the write output stage. The PLC transmits the status and data
from the output image register to the output point, and drives an external load through certain isolation and
power amplification. In addition to completing the tasks of the above three stages in one scan cycle, the PLC
also has to complete auxiliary tasks such as internal diagnosis, communication, public processing, and
input/output services.

The PLC repeats the above process, and the time for each repetition is a work cycle (or scan cycle). It can be
seen from the scanning method of the PLC that in order to quickly respond to changes in input and output
data and complete control tasks, the scanning time is short and the controller's work cycle is generally
controlled at the ms level. Therefore, it is necessary to develop a stable, reliable, and fast-response real-time
system for the PLC operating system.

Since the PLC employs a cyclic work mode, the input signal is only refreshed at the beginning of each cycle
and the output is output in a concentrated manner at the end of each work cycle, which inevitably causes a
lag between the output signal and the input signal. When a signal is input from the input end and
transmitted to the output end of the PLC, it takes some time to respond to the change of the input signal.
The lag time is an important parameter that should be understood when a PLC control system is designed.
Generally, the length of the lag time is related to the following factors.

1. Filtering time of the input circuit, which is determined by the time constant of the hardware RC filter
circuit. The input lag time can be adjusted by changing the time constant. Table 1-1 lists the technical
parameters of the AX-EM-1600D digital input module, where the "Port filtering time" indicates the
filtering time of the input module.

Table 1-1 Technical Parameters of the AX-EM-1600D Digital Input Module

Item Specification
Input channel 16
Input connection method 18-pin terminal block
Input voltage class 24V (upto30V)
Input current (typical) 4.7 mA
ON voltage >15VDC
OFF voltage <5VDC
Port filtering time 10 ms
Input resistance 5.4kQ
Input signal type VDC input
Isolation method Opto-coupler
Input dynamic display The indicator is on when the input is valid.

2. Lagtime of the output circuit, which is related to the mode of the output circuit. The lag time of the relay
output mode is generally about 10 ms, while that of the transistor output mode is less than 1 ms.

3. Cyclic scan mode of the controller.
4. Arrangement of statements in the user program.

To allow readers to better understand the whole process, a simple ladder diagram program example is given
below to show its input and output and how the lag is produced. The program logic is shown in Figure 1-4.

202512 (V1.1) 3

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

Figure 1-4 TM-series PLC Program

‘ bInput bOutput

| I []

binput has a hardware mapping relationship with an external input button, and when the button is pressed,
bInput is ON. Meanwhile, bOutput has a hardware mapping relationship with the coil of an external relay,
and when bOutput is ON, the coil is also energized. The relationship processed inside the PLC is shown in
Figure 1-6. When the input button is pressed, bInput will not be set to ON immediately, because input
sampling can only be executed by the program at the beginning of a work cycle. Since the button signal has
passed the sampling stage, it will usually be executed at the beginning of the next work cycle. In the
program shown in Figure 1-6, the state of bInput is assigned to bOutput. Since there are certain program
operations during program running, it takes a certain amount of program processing time for bOutput to be
set to ON. Since output refreshing occurs at the last stage of program processing, bOutput passes its value
to actual hardware through the output refreshing function at the last stage of the cycle, and finally the coil
can be energized. Figure 1-5 shows a relatively ideal state, in which the final output is only lagged by one
cycle.

Figure 1-5 Fastest Output

Program cycle time

f Program processing time - : Input refreshed
END; 0 END: 0 I:l :Qutput refreshed

0
P :
. OFF
Button input " :
OFF]
bInput .
bOutput OFF
OFF
Coil output \

Delay time
(minimum 1 cycle)

While Figure 1-5 shows a relatively ideal state, we also need to consider a worse situation. When the input
sampling of a cycle has just ended, the external input button is ON, Since the input signal can only be loaded
into the inputimage register at the beginning of the next cycle, and the actual output can only be loaded
into the output image register at the end of the next cycle, the whole process is shown in Figure 1-6. In this
case, the output is lagged by about 2 cycles, which is the slowest output.

Figure 1-6 Slowest Output

Program cycle time

/ Program processing time - ¢ Input refreshed
END; 0 END:0 l:l : Output refreshed

0
i I i
OFF
Buttoninput — 1 [.
OFF
bInput |
OFF
bOutput
Coil output OFF
v
Delay time

(maximum 2 cycles)

202512 (V1.1) 4

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

1.4 Task Execution Type

Thereis an entry named "Task Configuration" at the very top of the task configuration tree, which includes
the currently defined tasks, each represented by a task name. The call of POUs for specific tasks is not
displayed in the task configuration tree. The execution type of each task can be edited and configured,
including 4 types: Cyclic, Event, Freewheeling, and Status.

Figure 1-7 Task Execution Types
Type

s Event

& Bxternal
&5 Freewheeling
Status

1. Cyclic

The program processing time will vary depending on whether the instructions used in the program are
executed or not, so the actual execution time varies in each scan cycle and may be longer or shorter. By
using the Cyclic type, the program can be repeatedly executed while maintaining a certain cycle time. Even if
the program execution time changes, a certain refresh interval can be maintained. Here, we recommend
that you give priority to the Cyclic type. For example, if you set the corresponding task to the Cyclic type and
the interval to 10 ms, the actual program execution timing is shown in Figure 1-8.

Figure 1-8 Cyclic Execution Timing

Waiting time
Actual program gy END END END
execution time
8ms | 2ms 6ms 4ms 7ms 3ms 8ms
10ms 10ms 10ms 10ms
Cyclic setting time

If the program is actually completed within the specified Cyclic setting time, the remaining time is used for
waiting. If there are still lower-priority tasks in the application that have not been executed, the remaining
waiting time is used to execute these lower-priority tasks. The priority of tasks will be explained in detail
later.

2. Freewheeling

The task will be processed as soon as the program starts running, and will be automatically restarted in the
next cycle after one running cycle ends. This execution type is not affected by the program scan cycle. That
is, it ensures that the next cycle starts only after the last instruction of the program is executed, otherwise
the current cycle will not end. Figure 1-9 shows the freewheeling execution timing.

Figure 1-9 Freewheeling Execution Timing

END;O END:0 END;O END;O END;O END
Actual program !
execution time

8ms 6ms 7ms 3ms 8ms 7ms

Since there is no fixed task time for the freewheeling execution type, the execution time may be different
each time. Therefore, the real-time performance of the program cannot be guaranteed, and this type is
rarely used in actual applications.

202512 (V1.1)

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

3. Event
If the variable in the event area receives a rising edge, the task starts.
4. Status

If the variable in the event area is TRUE, the task starts. The Status type is similar to the Event type except
that the program will be executed as long as the trigger variable is TRUE, and will not be executed if it is
FALSE. The Event type only collects the valid signal of the rising edge of the trigger variable. Figure 1-10
compares the Event type and the Status type. The green solid line represents the Boolean variable state
selected by the two trigger types. The comparison results are listed in Table 1-2.

Figure 1-10 Task Input Trigger Signal

I

| 1 2 | 3 |4
Different types of tasks at sampling points 1-4 (purple) show different responses. The trigger condition of the
Status type is fulfilled when a specific event is TRUE, but an event-triggered task requires the event to
change from FALSE to TRUE. If the task is scheduled to sample too slowly, the rising edge of the event may

not be detected.

Table 1-2 Comparison of Event-triggered and Status-triggered Execution Results

Execution Point 1 2 3 4
Event Not executed Executed Executed Executed
Status Not executed Executed Not executed Not executed
1.5 Task Priority

1. Task priority setting

You can set the priority of a task, with a total of 32 levels (a number between 0 and 31, with 0 representing
the highest priority and 31 representing the lowest priority). When a program is being executed, high-priority
tasks take precedence over low-priority tasks. A task with the highest priority 0 can interrupt the execution
of lower-priority programs in the same resource, causing the execution of the lower-priority programs to be
slowed down.

Note: When assigning task priority levels, do not assign tasks with the same priority. If there are other
tasks that precede the task with the same priority, the results may be uncertain and unpredictable.

If the task execution type is "Cyclic", the task will be executed cyclically according to the "interval". The
specific settings are shown in Figure 1-11.

Figure 1-11 Cyclic Configuration

Configuration

Priority (0..31): |1

Type
| Cyclic v| Interval {e.g. t£200ms) |4

Example: Assuming there are 3 different tasks, corresponding to three different priority levels, the specific
allocation is as follows.

: Task 1 has a priority level of 0 and a cycle time of 10ms.
-: Task 2 has a priority level of 1 and a cycle time of 30ms.
-: Task 3 has a priority level of 2 and a cycle time of 40ms.
The timing relationship of each task inside the controller is shown in Figure 1-12, and explained as follows:

0-10ms: Task 1 (with the highest priority) is executed first, and if the program is finished within the current

202512 (V1.1) 6

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

cycle, the remaining time will be used to execute Task 2. However, if Task 2 has not been fully executed after
10 ms, it will be interrupted because Task 1 is executed every 10 ms and has the highest priority.

10-20ms: Task 1 is executed first, and if there is any time left, the unfinished Task 2 in the previous cycle will
be executed.

20-30ms: Since Task 2 is executed every 30 ms and has been finished within 10-20 ms, there is no need to
execute Task 2 at this time and only Task 1 with the highest priority is executed once.

30-40ms: Similar to above.

40-50ms: Task 3 appears at this time. Since Task 3 has the lowest priority, it can only be executed after
ensuring that Task 2 has been thoroughly executed.

Figure 1-12 Task Priority Interrupt Execution Sequence

C D C

20

Task 1 interrupt
Task 2

2. Task priority setting of TM and TP-series PLCs

t (ms)

Task 1 interrupt
Task 3

When the upper computer software of the AX, TM, and TP-series controllers creates a new standard project,
a MainTask is created by default in the Task Configuration, with its priority being 1 by default. The priority of
newly created tasks is also 1 by default, but to ensure that important tasks such as motion control are
prioritized, the performance of the controllers can be given appropriate play in some applications that
require high-performance motion control (MC). The following order is recommended for task priority setting
(if there is only one task, the task priority can be set arbitrarily).

Table 1-3 Task Priority Setting

Task Type Recommended Priority
RTC_Mod and other system parameter 31
modules
ModbusTCP 15-30
ModbusRTU 15-30
High-speed 1/0 1
Analog input and output modules 1-15
Temperature Module 1-15
EtherCAT 0

The smaller the priority setting value, the higher the priority. A high-priority POU can interrupt the execution
of a low-priority POU, as shown in Figure 1-13, where ECT stands for EtherCAT.

202512 (V1.1) 7

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

Figure 1-13 POU Execution Sequence

- ECT ECT ECT ECT

ECT cycle (priority 0) cycle cycle cycle cycle

10 | UPRG |MC I0 | UPRG |MC 10 | UPRG | MC 10 | UPRG | MC 10 | UPRG |MC

End of End of End of End of End of
execution A execution A execution 4 execution A execution
v | v Task cycle (priority 16) 4
Halt 10 | UPRG.. Halt UPRG Halt 10 | UPRG..
End of
execytion
v A 4
Halt UPRG Halt .UPRG.. Halt UPRG
End of
execution

It can be seen from Figure 1-13 that when the controller executes tasks, there is a time alignment point that
cannot be observed by users, as shown on the left side of the above figure. Starting from this time point, the
tasks are executed in an order of the highest priority — the next highest priority — the lowest priority.

A low-priority task may be interrupted by a high-priority task while it is being executed, and when the
execution of the high-priority task is finished, the interrupted low-priority task will be returned to continue.

The EtherCAT task is a task with the highest priority, which is executed according to the EtherCAT cycle, and
all POUs within the task are completely executed once before the tasks with lower priority are returned.

3. Requirements for execution cycle setting in Task Configuration

The upper computer software of medium and large-scale PLC systems executes the "tasks" of user
programs in a multi-task mode, and each "task" is assigned a different execution cycle. Some global
variables may need to be accessed and modified between different POUs, so the global variables need to be
interactively synchronized, which is also performed at the "time alignment point" of the task. When the
cycle of a cyclic type task is set, the cycle times of different types of cyclic tasks are integer multiples of each
other.

For example, the cycle time of the EtherCAT task is set to 4 ms or 8 ms, the cycle time of a normal cyclic task
is set to 400 ms, and the cycle time of a lower-priority task is set to 100 ms or 200 ms. The cycle time of the
EtherCAT task should not be set to 5 ms, 7 ms, 9 ms, etc., as it may easily cause an abnormal relationship
other than an integer multiple of 2.

4. Considerations in the configuration of sub-device bus cycle options

In the controller device "PLC Setting — Bus Cycle — Bus Cycle Task" option, the list of Bus Cycle Task
Options provides the tasks defined in the Task Configuration of the current valid project (such as "MainTask",
"EtherCAT Master", and so on). If you select one of the tasks as the bus cycle of the current project, or select
the option <unspecified>, it means that the shortest task cycle time or the fastest execution cycle will be
applied. You can switch to another setting, but be sure to understand the following:

Before modifying the <unspecified> setting, you should be aware of its impact. It is a default action defined
by the device description. So, please check the description for this. By default, the task may be defined as
having the shortest cycle time, but it may also have the longest cycle time. Therefore, when using expansion
modules and EtherCAT modules, in order to improve the system operation stability (especially when using
the EtherCAT_Master_SoftMotion module), select the tasks corresponding to each module in "EtherCAT I/O
Mapping — Bus Cycle Option". The reference routine is shown in Figure 1-14.

202512 (V1.1) 8

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

Figure 1-14 Example of EtherCAT Bus Cycle Task Setting

v 8 X & MeTex (] EtherCAT M

EtherCAT 10 Mapping

EherCAT IEC Objects

Satus

Fiotion (EtherCAT Master Saffiotio
{DA200-N EtherCATICoE) Drive V25|

—— e LR
Buikd b

Description Project Otject Position

1.6 Running of Multiple Subprograms

In actual projects, the program can usually be split into many subprograms by control flow or device object,
based on which the designer can program each processing unit separately. As shown in Figure 1-15 below,
the main program is split into multiple subprograms with different flows by control flow. The purpose of
splitting is mainly to make the main program more organized and convenient for future debugging.

Figure 1-15 Splitting into Multiple Subprograms by Control Flow
Main program

PLC_PRG

ot I Subprogram
} Control process 1 } Control process 1
o 5 PRG1

[|
[,77771 77777 ‘ After program Subprogram V
| Control process 2 | m’ PRG2| control process 2
- - a

Y Y

P [Subprogram
, Control process n } PRGN Control process n

The right half of Figure 1-15 shows the subprograms PRG1, PRG2 ... PRGn classified by control flow, while the
left half shows the main program PLC_PRG, in which you can call subprograms PRGL1 ... PRGn respectively.
There are two methods to run multiple subprograms: the first method is to add subprograms in the Task
Configuration, and the second method is to call subprograms in the main program, which is also common
and flexible. The two methods are explained in detail below.

1. Add subprograms in the Task Configuration

Users can run multiple subprograms by adding subprograms in the Task Configuration page. Click "Add
Call" to add subprograms in the sequence in which they are executed. As shown in Figure 1-16, after adding
subprograms, the corresponding tasks will be executed cyclically in a top-down sequence specified by users,
and the sequence can also be manually edited through the "Move Up" and "Move Down" functions.

202512 (V1.1) 9

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

Figure 1-16 Add Subprograms in the Task Configuration

gk Add Call 3 Rernove Call [# Change Call Move Up Move Down | ™= Open POU
PoOU Comment
#] PLC_PRG

2. Calling subprograms in the main program PLC_PRG

PLC_PRG is defaulted as the main program by the system, which can be understood as a car's battery in a
sense. When the car is produced, its various components are assembled, which is equivalent to the writing
of subprograms; when the car is fully assembled, it is necessary to check whether it is usable. If you want to
start the car, you must use the battery to start its various components, such as the engine and headlamps.
The battery is equivalent to the entry point for starting the car. By calling subprograms in this way, the
operability is enhanced and the program runs more flexibly. In addition, judgment statements can be added
to the program, and nesting can be achieved.

PLC_PRG is a special POU that runs in the "freewheeling" mode by default. This POU is called every control
cycle by default without any additional task configuration. Its configuration can also be found in the Task
Configuration. Users can use it to call other subprograms, add necessary condition options when calling
subprograms, or nest subprograms to make program calls more flexible. To implement the call relationship
shown in Figure 1-17, you can write the following code in the main program PLC _PRG.

Figure 1-17 POU Calling Sequence

)

POU_1
POU_3
PLC_PRG b
POU_30;
Main POU_40;
POU_10;
program | 5 0.
POU_4

POU_2

As shown in Figure 1-17, the main program is PLC_PRG, which uses the structured text programming
language, and the program content is POU_1(); POU_2(). The main function of the above program is to call
and execute the POU_1 and POU_2 subprograms respectively. Since POU_1 calls POU_3 and POU_4
respectively, the PLC actually executes the program in the following sequence:

A. The PLC first executes the subprogram POU_1.

B. Since POU_1 calls POU_3 and POU_4 in sequence, POU_3 is executed first.
C. POU_4isexecuted, and POU_1 is finished.

D. POU_2isfinally executed to complete a full task cycle.

The above steps A to D are repeated as the execution sequence inside the PLC.

202512 (V1.1) 10

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

1.7 Single Axis Control

1.7.1 Programming Instructions for Single Axis Control

The motion control of the controller and the servo axis (such as DA200) is realized based on the EtherCAT
bus network. Each EtherCAT bus cycle will perform an operation and issue a control instruction to control
the servo. Different from the previous pulse control method, the EtherCAT bus is completely implemented
by software. Attention should be paid to the following points during application:

® MC-related POUs should be configured to execute under the EtherCAT task. Most MC function blocks
cannot run normally if they are placed in the POU of a low-priority Main task.

® The PDO configuration table needs to be configured with relevant data objects; otherwise, the servo
will be unable to move due to the missing communication data object configuration, and no error
alarm will be generated in this case, making it more difficult to troubleshoot.

® The controller can set the parameters of the servo by configuring SDO.

® An MC function block instance can only be used for the control of a unique servo axis; otherwise, an
error may occur if it is used for the control of multiple servo axes.

® An MC function block must be used to monitor the running servo axis to avoid any error caused by
program logic jump without MC function block monitoring. Such error is usually difficult to
troubleshoot.

® Attention should be paid to the safe processing of debugging and it is required to ensure that the signal
configuration is consistent with the actual application. If the servo system uses an incremental encoder,
it needs to return to zero before normal operation. For movements within a limited range (such as a
lead screw), limit and safety protection signals should be set.

1.7.2 Commonly Used MC Function Blocks for Single Axis Control
An MC function block (FB) is also called an MC instruction. In fact, the object instance of an MC function
block is used in the user program, and the servo axis is controlled by the MC object instance, for example:
MC_Powerl: MC_Power; // Declare instance MC_Powerl
MC_Powerl (Axis=Axisl,);

Single axis control is generally used for positioning control, that is, the servo motor drives the external
mechanism to move to the specified position. Sometimes, the servo is required to run at a specified speed or
torque. In single axis control, the following MC function blocks are commonly used:

Table 1-4 Common MC Function Blocks for Single Axis Control

. MC Instructions To . .
Control Action Description
Be Used

Run this instruction to enable the servo axis for subsequent

Servo enable MC_Power .
operation control
Absolute i . .
position MC_MoveAbsolute |Instruct the servo to move to the specified coordinate point
Relative . Take the current position as reference and move to the
o MC_MoveRelative - .
position specified distance
Run the servo motor in a jog mode, which is often used for
Servo jog MC_Jog low-speed test runs to check the device or adjust the servo
motor position
Relative - .
. . Based on the currently running instruction of the servo, move
superimposed | MC_MoveAdditive . . .
" to the specified distance relatively
position

Speed control | MC_MoveVelocity |Instruct the servo to run at a specified speed
202512 (V1.1) 11

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

MC Instructions To

Control Action Description
Be Used
Instruct the servo to halt running. If MC_Movexxx is triggered
Servo halt MC_Halt) . & - g6
again, the servo can run again.
Instruct the servo to stop in an emergency. The servo can only
Emergency stop MC_Stop run again after the stop instruction is reset and MC_Movexxx
is triggered.
When the servo stops due to an alarm, run this instruction to
Alarm reset MC_Reset reset it

Instruct the servo to return to the home position. The home
Servo home MC_Home signal of the application system and the limit signals on both
sides are connected to the DI port of the servo

The control system starts to return to the home position. The
MC_Homing home signal of the application system and the limit signals on
both sides are connected to the DI port of the controller

Controller
home

1.8 Cam Synchronization Control

An electronic cam (ECAM for short) is a software system that uses a constructed cam curve to simulate a
mechanical cam to achieve the same relative motion between the camshaft and the master axisasin a
mechanical cam system. Electronic cams can be used in various fields such as automobile manufacturing,
metallurgy, mechanical processing, textiles, printing, and food packaging. An electronic cam curve is a
function curve with the master axis pulse (active axis) input as X and the corresponding output of the servo
motor (camshaft) as Y=F(X).

Figure 1-18 Electronic Cam

The electronic cam function of the PLC has the following features:

® Cam curves are easy to draw: Cams can be described by cam table, cam curve, or array, and multiple
cam chart selections and dynamic switching during running are supported.

® Cam curves are easy to correct: The running cam table can be modified dynamically.

® Support one master and multiple slaves: One master axis can have multiple slave axes corresponding
toit.

® Cam tappet: multiple cam tappets and multiple setting intervals are allowed.
® Cam clutch: The user program can make it enter and exit the cam running.
® Special functions: Virtual master axis, phase offset, and output superimposition are supported.

Note: The so-called "online cam curve modification" refers to the modification of the key point
coordinates of the cam curve according to the needs of control characteristics during the execution of the
program written by users. The key point coordinates are generally modified, but you can also modify the
number of key points, the distance range of the master axis, etc.

The electronic cam of the PLC has three control elements:

1. Master axis: Reference axis for synchronous control.

202512 (V1.1) 12

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

2. Slave axis: a servo axis that follows the movement of the master axis according to the non-linear
characteristics.

3. Camtable: Data table or cam curve describing the relative position, range, cyclicity of the master-slave
axes.

Commonly used function blocks related to the electronic cam are listed in the following table:

Table 1-5 Common Function Blocks of Electronic Cam

MC Instruction Description
Run this instruction to associate the relationship between
the master axis, the slave axis, and the cam table.

MC_CamTableSelect

MC_Camlin Instruct the slave axis to enter cam operation
MC_CamOut Instruct the slave axis to exit cam operation
MC_Phasing Modify the phase of the master axis

1.8.1 Cyclic Mode of the Cam Table

Single-cycle mode (Periodic:=0): After the cam table cycle is completed, the slave axis will exit the cam
running state, as shown in Figure 1-19.

Figure 1-19 Single-Cycle Mode
MC_CamTableSelect.Priodic=0

Slave axis
position
Slave axis
position
Master axis B
" »
position Q 360 360 360
L O T I M B | » t
I L L L L D L L D L L L D D e D N B B L
0 A

MC_Camin.Execute=1

Cyclic mode (Periodic:=1): After the cam table cycle is completed, the slave axis starts the next cam cycle
until the user program instructions it to exit the cam running state, as shown in Figure 1-20.
Figure 1-20 Cyclic Mode
Description of the slave axis's relative

position
MC_CamTableSelect.SlaveAbsolute:=False T

Slave axis Slave axis.
position “position B
Slave axis N -
position —

Master axis

osition >

P Y 360 360 360

T T T T T T O O N A O A | »
I L L L L L D L L L L D D e B B N L t
0 A

MC_CamIn.Execute=1

1.8.2 Input Method of the Cam Table
When a new cam table is created, the system will automatically generate the simplest cam curve, and you
can edit it to form his or her own cam curve table.

You can increase or decrease the number of key points on the cam curve or change the coordinates of the
key points.

The line pattern between two key points on the cam curve can be set to a straight line or a quintic
polynomial, and the system will optimize each curve to minimize sudden changes in speed and acceleration.

202512 (V1.1) 13

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

Figure 1-21 Cam Curve

= 8 X[® ek [ChecAT Mese Softiein | ChmCATTsk) Cem X
Cam Camtable Tappels Tappet table

Properties - Cam [Device: PLC Lagic: Application] % "

Cam Bud Access Control

|
Bl
#l
£l
{
=
ul
e |
i

1.8.3 Data Structure of the Cam Table

In Invtmatic Studio, for each cam table, there is a data structure and characteristic data describing the cam
table. The figure below shows the data structure of the "CAM0" cam table. Please pay attention to the
names of the variables in their structure.

Figure 1-22 Data Structure of the Cam Table

Cam Camtable Tappets Tappet table

X Ny v A J Segme.. min{Po.. max(P.. max(V.. max{A..
0) 0) 0
& Polys 0 120 1.5120... 0.0323...
& 120 120 1 0 0
& Palys 120 240 1 0
& 240 240 1 0 0
& Polys 240 380 1.512 0.0323...
360 360 o 0 0

There is a data structure inside Invtmatic Studio to describe the characteristics of the cam table. We can also
manually write a cam table or modify the characteristic data of the cam through data structure access
operations.

#Note: When we declare the CAMO cam table, the system automatically declares the CAMO data structure of
the global variable type by default, and also declares the CAMO_A[i] array at the same time.

For example, modify the number or coordinates of key points in the CAMO cam table in the user program:
CAMO.nElements:=10; Modify the number of key points to 10
CAMO0.XEnd:=300; Modify the end point of the master axis to 300

For example, modify the coordinates of two key points in the user program:
CAMO_A[2].dx:=10
CAMO_A[2].dy:=30
CAMO_A[2].dv:=1
CAMO_A[2].da:=0
CAMO_A[3].dx:=30
CAMO_A[3].dy:=50
CAMO_A[3].dv:=1
CAMO_A[3].da:=0

202512 (V1.1) 14

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

1.8.4 Reference and Switching of Cam Tables

The cam table is stored in an array inside the controller and can be referred to by a specific MC_CAM_REF
variable type. For example, to declare:

Cam table q: MC_CAM_REF;

You can assign a value to this variable, or you can consider it as referring to a specific cam table:

Cam table q:=Cam0; // Refer to the required cam table

Cam table q: MC_CAM_REF; // Cam table pointer;

TablelD: uint; // Cam table selection instruction, which can be set on the HMI;
CaseTablelDof

0: Cam table g:=Cam table A,

1: Cam table g:=Cam table B;

2: Cam table g:=Cam table C;

End_case

MC_CamTableSelect_0(// Cam relationship

Master:=Virtual master axis

Slave:=Cam slave axis

CamTable:=Cam table q

Execute:=bSelect, // Cam table selection is triggered at a rising edge
Periodic:=TRUE,

MasterAbsolute:=FALSE,

SlaveAbsolute:=FALSE);

The above routine uses the assignment operation of the MC_CAM_REF variable to realize the switching of
multiple cam tables.

1.9 Programming Suggestions

In Invtmatic Studio, you can set the priority of a task, with a total of 32 levels (a number between 0 and 31,
with 0 representing the highest priority and 31 representing the lowest priority). When a program is being
executed, high-priority tasks take precedence over low-priority tasks. A task with the highest priority 0 can
interrupt the execution of lower-priority programs in the same resource, causing the execution of the
lower-priority programs to be slowed down. When assigning task priority levels, do not assign tasks with the
same priority.

Note:

For multi-core models, EtherCAT is bound to Core 1, while other tasks run on Core 0. For the four-core
model TP2422, EtherCAT is bound to Cores 2 and 3, and other tasks run on Cores 0 and 1.

For one task configuration, you can only set one priority, cycle type, and interval. If different execution
characteristics are required, you need to add multiple task configurations.

One task configuration can contain multiple POUs, which are executed in the sequence in which the
POUs are added in the task.

The task priority of EtherCAT bus communication is generally set to the highest priority 0, and the scan
cycle is generally set to 1-4 ms. The smaller the set value, the higher the accuracy of motion control.
When there are many axes, the scan cycle should be appropriately extended; otherwise, the CPU load
rate will be high and axis loss may occur.

Task configuration - running status monitoring

After entering the online mode, you can use the system's built-in monitor to monitor task execution related

202512 (V1.1) 15

INVT Medium and Large-Scale PLC Programming Manual Program Structure and Execution

parameters such as average, maximum, and minimum cycle time of a task. During the project development
phase, this function can be used to test the maximum, minimum, and average cycle time of the program to
determine the stability of the program and optimize the task cycle time set by the program.
In the task configuration, the following time setting relationship should be followed. This setting method
can better optimize the task cycle and "watchdog" time to ensure the stability and real-time performance of
the program.

"Watchdog" trigger time > Cyclic time > Maximum program cycle time

If the program cycle time is longer than the Cyclic time, the CPU will detect that the program has exceeded
the count, which will affect the real-time performance of the program. If the program cycle time is longer
than the watchdog trigger time, the CPU will detect a watchdog failure and stop program execution.

202512 (V1.1) 16

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

2 EtherCAT Operation Mechanism

2.1 EtherCAT Operation Principle

2.1.1 Introduction to the EtherCAT Protocol

EtherCAT (Ethernet for Control Automation Technology) is a technology that overcomes the inherent
limitations of other Ethernet solutions and has the following key features:

Efficient data processing: Traditional Ethernet solutions require receiving data packets, decoding, and
copying process data to each device, while EtherCAT slave devices can read data with corresponding
addressing information as the message passes through its node, and insert input data as the message
passes. This processing method results in a message delay of only a few nanoseconds.

Data transmission process: The frame sent from the master is transmitted and passes through all slaves to
the last slave of the segment or branch. When the last device detects its open port, it returns the frame to
the master. Since the sent and received Ethernet frames compress a large amount of device data, the
available data rate can reach over 90%, the 100Mb/s full-duplex feature is fully utilized, and the effective
data rate can reach over 100Mb/s.

Design of master and slave: The EtherCAT master uses a standard Ethernet media access controller (MAC)
without the need for an additional communication processor, which means that any device controller with
an integrated Ethernet interface can implement the EtherCAT master, regardless of the operating system or
application environment. The EtherCAT slave uses an EtherCAT slave controller (ESC) to process data
dynamically at a high speed. Network performance does not depend on the performance of the
microprocessor used in the slave because all communications are completed in the ESC hardware. The
process data interface (PDI) provides a dual-port random access memory (DPRAM) for the slave application
layer to implement data exchange.

Precise synchronization: Precise synchronization is particularly important in distributed processes that
require extensive synchronization actions, such as when multiple servo axes perform linked tasks
simultaneously. Accurate calibration of distributed clocks is an effective solution to achieve synchronization.
Compared to fully synchronous communication, distributed calibrated clocks are more tolerant to delay
errors to some extent.

With these features, EtherCAT provides an efficient, flexible, and reliable industrial Ethernet solution
suitable for various automation control applications.

2.1.2 Working Counter (WKC)

Each EtherCAT message ends with a 16-bit working counter (WKC). The WKC is a working counter used to
record the number of read and write times for the EtherCAT slave device. The EtherCAT slave controller
calculates the WKC in hardware, and the master checks the WKC in the sub-message after receiving the
returned data. If it is not equal to the expected value, it means that the sub-message is not processed
correctly. When a sub-message passes through a certain slave, the WKC will be increased by 1 if it is a single
read or write operation. If it is a read/write operation, the WKC will be increased by 1 when the read
operation is successful, by 2 when the write is successful, and by 3 when both are completed. The WKC is the
accumulation of the processing results of each slave. The description of WKC increment is shown in Table
2-1.

202512 (V1.1) 17

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

Table 2-1 WKC Increment

Instruction Data Type Increment
Read failed No change
Read
Read succeeded +1
. Write failed No change
Write -
Write succeeded +1
Failed No change
. Read succeeded +1
Read/write -
Write succeeded +2
Read/write succeeded +3

2.1.3 Addressing Mode

EtherCAT communication is realized by the master sending EtherCAT data frames to read and write the
internal storage area of the slave device. EtherCAT messages use multiple addressing modes to operate the
internal storage area of the ESC for multiple communication services. EtherCAT addressing modes are
shown in Figure 2-1. An EtherCAT segment is equivalent to an Ethernet device. The master first uses the MAC
address of the Ethernet data frame header to address the segment, and then uses the 32-bit address in the
EtherCAT sub-message header to address the device in the segment. There are two ways for in-segment
addressing: device addressing and logical addressing. Device addressing performs read/write operations on
a specific slave. Logical addressing is oriented towards process data and can realize multicast. The same
sub-message can read/write multiple slave devices.

Figure 2-1 EtherCAT Network Addressing Modes

Ethernet data frame
header address

Segment MAC address
o

Device addressing Logical addressing
|
|
Sequential \—‘
m Setting addressing
T i %

Addressing by the Addressing by node Process data addressing
physical location to number
which the device is

connected

EtherCAT sub-message header
address area

2.1.3.1 Segment Addressing

Depending on the connection type of the EtherCAT master and its segment, the following two modes can be
used to address a segment.
1. Direct mode
An EtherCAT segment is directly connected to a standard Ethernet port of the master device, as shown in
Figure 2-2. In this case, the master uses the broadcast MAC address and the EtherCAT data frame is shown in
Figure 2-3.

Figure 2-2 EtherCAT Segment in Direct Mode

§ An EtherCAT network segment is equivalent to an Ethernet device 3

Master I| Slave Slave Slave Slave Slave Slave
device I | device device device device device device

,,,

202512 (V1.1) 18

INVT Medium and Large-Scale PLC Programming Manual

EtherCAT Operation Mechanism

Figure 2-3 Addressed Content of EtherCAT Segment in Direct Mode

6 bytes 6 bxtes 2 bytes 2 bytes 44 ~ 1498 bytes 4 bytes
N
Destination address: Source address: Frame type EtherCAT
FFFFFFFFFFFF | FFFFFFFFFFFF | (0x88A4) |message header| ~ EtherCAT data PCS

2. Open Mode

An EtherCAT segment is connected to a standard Ethernet switch, as shown in Figure 2-4. In this case, the
segment requires a MAC address, and the address in the EtherCAT data frame sent from the master is the
MAC address of the segment it controls, as shown in Figure 2-5. The first slave device in the EtherCAT
segment has an ISO/IEC 8802.3 MAC address, which represents the entire segment, and the slave is called a
segment address slave, which can exchange the destination address area and source address area within
the Ethernet. If EtherCAT data frame is sent over UDP, the device will also exchange the source and
destination IP addresses and the source and destination UDP port numbers, making the response frame
fully meet the UDP/IP protocol.

Figure 2-4 EtherCAT Segment in Open Mode

An EtherCAT network segment is equivalent to an
Ethernet device

| Slave |
| device |
Master i with a Slave Slave Slave Slave Slave i
device . ! segment device device device device device |
Switch | address |
L [1 [[[[1 [§
Ordinary Ethernet o An EtherCAT network segment is equivalenttoan |
device i Slave Ethernet device |
i device i
! with a Slave Slave Slave Slave Slave i
| segment device device device device device |
| address |
Master ! !
device 3 [1 [1 [1 [1 [1 | |
Figure 2-5 Addressed Content of EtherCAT Segment in Open Mode
6 bytes 6 bxtes 2 bytes 2 bytes 44-1498 bytes 4 bytes
PRl N,
Destination address: Source address: Frame type EtherCAT
Segment MAC address | MAC address of master| (0x88A4) message header EtherCAT data PCS

2.1.3.2 Device Addressing

During device addressing, the 32-bit address in the EtherCAT sub-message header is divided into a 16-bit
slave device address and a 16-bit slave device internal physical storage space address, as shown in Figure
2-6. The 16-bit slave device address can address 65535 slave devices, each of which can have up to 64 local
address spaces.

During device addressing, each message only addresses a unique slave device, but it has two different
device addressing mechanisms (sequential addressing and set addressing).

Figure 2-6 EtherCAT Device Addressing Structure

8bit 8bit 32bit 11bit 2 1 1 1 16bit
Command Index Address area Length R|C|R | M Stzittus
I 16bit 16bit
Sequentia Slave sequential| Memory offset < Sequential
addressing address address addressing
Setting Slave settin < Settin
S g Memory offset g
addressing address ‘ address addressing
Logical R Logical
addressing Logical address <— addrissing

1. Sequential addressing

For sequential addressing, the address of a slave is determined by its connection position in the segment,

202512 (V1.1) 19

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

and a negative number is used to represent the position of each slave in the segment determined by the
wiring sequence. When the sequential addressing sub-message passes through each slave device, its
sequential address is increased by 1; and when the slave receives a message, the message with a sequential
address of 0 is the message addressed to itself. Since this mechanism updates the device address as the
message passes, it is also called "auto-increment addressing".

As shown in Figure 2-7, there are 3 slave devices (0X0000, OXFFFF, and OXFFFE) in the segment, and their
sequentially addressed addresses are 0, -1, -2, and so on. When the master uses sequential addressing to
access the slave, the address change of the sub-message is shown in Figure 2-8. The master sends 3
sub-messages to address 3 slaves, where the addresses are 0, -1, and -2 respectively, such as the data frame
1in Figure 2-8. When the data frame reaches the slave @, the slave @ checks that the address in the
sub-message 1is 0, thus knowing that the sub-message 1 is the message addressed to itself. After the data
frame passes through the slave @, all sequential addresses are increased by 1, called 1,0, and -1, such as the
data frame 2 in Figure 2-8. When it reaches the slave @, the slave @ finds that the sequential address in the
sub-message 2 is 0, which is its own message. Similarly, subsequent slaves are addressed in this way. As
shown in Figure 2-7, in actual engineering applications, sequential addressing is mainly used in the startup
phase, when the master configures addresses for each slave. Thereafter, the slave can be addressed using
an address that is independent of its physical location. The sequential addressing mechanism can be used
to set an address for the slave, as shown in Figure 2-8.

Figure 2-7 Sequentially Addressed Slave Address
0x0000(0) OXFFFF(-1) OXFFFE(-2)

|F>cE |:|_l _l
00| g 7

HI 80 = —
[

@)

inj

00 OO OO
0O

OO

oV,

Figure 2-8 Change of Sub-message Address during Sequential Addressing

Sub-message 1 Sub-message 2 Sub-message 3
Data 0 OxFFFF OxFFFE
frame 1 P wan mms (_1) (_2)
The sequential address of the message sent by the master, that is, the address arriving at the slave @
Data OXFFFF
frame2 | oo 1 o | .. o

The sequential address of the message processed by the slave @, that is, the address arriving at the slave @

Data

frame 3 2 1T 1 .. 0

The sequential address of the message processed by the master @, that is, the address arriving at the slave @

2. Setaddressing

During set addressing, the addresses of slaves are independent of their consecutive sequence within the
segment. As shown in Figure 2-9, the addresses can be configured by the master to slaves during the data
link startup phase, or can be loaded by the configuration data of the slaves during the power-on
initialization phase, and then the master uses sequential addressing to read the set address of each slave
during the link startup phase. Its message structure is shown in Figure 2-10.

202512 (V1.1) 20

INVT Medium and Large-Scale PLC Programming Manual

EtherCAT Operation Mechanism

Figure 2-9 Slave Address in Set Addressing Mode

1000 1234 5678
IPC |:|
=
Hinin
oj\o 83 — —
i 00 eJe eJe
Hinin 0O
DVI @

)

®

Figure 2-10 Message Structure in Set Addressing Mode

Sub-message 1

Sub-message 2

Sub-message 3

Data
frame 1

1000 -

1234

5678

2.1.3.3 Logical Addressing

For logical addressing, the slave address is not defined separately, but using a section of the 4GB logical
address space in the addressed segment. The 32-bit address area within the message is used as the logical
address of the overall data to complete the logical addressing of the device. The logical addressing mode is
implemented by the Fieldbus Memory Management Unit (FMMU). The FMMU function is located inside each

ESC and maps the local physical storage address of a slave to the logical address in the segment. The
schematic diagram is shown in Figure 2-11.

23

Datan

IFC

Figure 2-11 FMMU Operation Principle

- = m S 2 BB | m
T A a A “ ‘ A : f Yy f "
1
I iA R (R 1 1
Ethernet Sub- = Sub- by Sub- S e
message | message message
headegr heade§1 ala heade?Z e message n gan

Y

|

PLC data

Fy

NC data

F 3

0

When receiving an EtherCAT sub-message for logical addressing of data, the slave device will check for an

Sub-message 1

Sub-message 2

Sub-message n

FMMU unit address match. If so, it inserts the input type data into the corresponding position of the

EtherCAT sub-message data area, and extracts the output type data from the corresponding position of the

EtherCAT sub-message data area.

202512 (V1.1)

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

2.1.4 Distributed Clock

2.1.4.1 Distributed Clock Concept

Precise synchronization is particularly important for distributed processes that act simultaneously, for
example, when several servo axes perform coordinated movements simultaneously. The distributed clock
mechanism enables all slaves to be synchronized to a reference clock. The first distributed clock-capable
slave connected to the master is used as the reference clock to synchronize the slave clocks of other devices
and the master. In order to achieve precise clock synchronization control, data transmission delay and local
clock offset must be measured and calculated, and the drift of the local clock must be compensated. The
synchronous clock involves the following six concepts.

1. System time

System time is the system time used by the distributed clock. It starts from 0:00 on January 1, 2001, and is
expressed as a 64-bit binary variable in nanoseconds (ns) and can be timed for up to 500 years. It can also be
expressed as a 32-bit binary variable with a maximum of 4.2 s, which is usually used for communication and
time stamping.

2. Reference clock and slave clock

The EtherCAT protocol defines the first distributed clock-capable slave connected to the master acts as the
reference clock, and the clocks of other slaves are called slave clocks. The reference clock is used to
synchronize the slave clocks of other slave devices and the master clock. The reference clock provides the
EtherCAT system time.

3. Master clock

The EtherCAT master also has a timing function, which is called the master clock. The master clock can be
synchronized as a slave clock in a distributed clock system. During the initialization phase, the master can
send the master clock to the reference clock slave in the format of system time so that the distributed clock
uses the system time for timing.

4. Local clock and its initial offset and clock drift

Each DC slave has a local clock, which runs independently and is timed using the local clock signal. When
the system starts, there is a certain difference between the local clock of each slave and the reference clock,
which is called initial clock offset. During operation, since the reference clock and the DC slave clock use
their own clock sources, their timing cycles drift to a certain extent, which will cause the clocks to run
asynchronously and the local clock to drift. Therefore, the initial clock offset and clock drift must be
compensated.

5. Local system time

The local clock of each DC slave generates a local system time after compensation and synchronization. The
distributed clock synchronization mechanism is to keep the local system time of each slave consistent. The
reference clock is also the local system clock of the corresponding slave.

6. Transmission delay

There will be a certain delay when data frames are transmitted between slaves. It includes both internal
device and physical connection delays. Therefore, when synchronizing slave clocks, the transmission delay
between the reference clock and multiple slave clocks should be considered.

2.1.4.2 Clock Synchronization Process

Clock synchronization consists of the following three steps:
Stepl Transmission delay measurement

When the distributed clock is initialized, the master will initialize the transmission delay for all slaves
in all directions, calculate the deviation value between each slave clock and the reference clock, and
write it to the slave clock.

202512 (V1.1) 22

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

Step2 Reference clock offset compensation (system time)

The local clock of each slave will be compared with the system time, and then different comparison
results will be written into different slaves so that all slaves will get the absolute system time.

Step3 Reference clock drift compensation

Clock drift compensation and local time are used to periodically compensate for the error and
fine-tune the local clock. The following diagrams illustrate two application cases of compensation
operations: Figure 2-12 illustrates the case where the system time is less than the local clock of the
slave, while Figure 2-13 illustrates the case where the system time is greater than the local time.

Figure 2-12 Clock Synchronization Process: System Time < Local Time

1 system time t local clock
A A
Include drift Rx
compensatlon of the A Transmission delay
system time o .
Transmission ¥ compensation
delay. -
TX e Local clock Offset compensation
X ettt
........... A 4 Drift compensation
System Target: The slave clock
time copys the system time
» X
Reference clock Slave clock
Figure 2-13 Clock Synchronization Process: System Time > Local Time
t system time 1 local clock
A A
Target: The slave clock
Tx copys the system time Drift
S~—_ T T T T TTTTT7T1T T T 77 A 7| compensation
System
time
R Offset
N compensation
Include drift .
compensation of N . Transmissig nA Transmission
the system time “t-. delay delay
. compensation
Local clock
» X
Reference clock Slave clock

For EtherCAT, data exchange is based entirely on pure hardware mechanisms. Since a logical ring structure
is used for communication (with the help of the physical layer of full-duplex Fast Ethernet), the master clock
can simply and accurately determine the delay offset propagated by each slave clock, and vice versa.
Distributed clocks are all adjusted based on this value, which means that a very precise, deterministic
synchronization error time base of less than 1 us can be used across the network. Its structure is shown in
Figure 2-14.

202512 (V1.1) 23

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

Figure 2-14 Principle of Synchronous Clock

ETS (TS £MS (MS M5 S
R Ry
T A A E%@T

For example, the difference between two devices is 300 nodes, the cable length is 120 m, and the
communication signal is captured using an oscilloscope. The result is shown in Figure 2-15.

Figure 2-15 Synchronous Clock Performance Test

U

Node 1

interrupt

Synchronization ~15 ng

time:

Jitter: ~ +/-20ns

Node 300 :

@ 2.00V Ch2° 2.00V (H20.0n$)A Chl \ 1.40V

T >':0.00000 S

This function is very important for motion control. It calculates the speed through the continuously detected
position values. When the sampling time is very short, even a small instantaneous jitter in the position
measurement will cause a large step change in the speed calculation. In EtherCAT, the introduction of
time-stamped data types as a logical extension allows high-resolution system time to be added to the
measured value, which is made possible by the huge bandwidth that Ethernet provides.

2.2 EtherCAT Communication Mode

In actual automation control systems, there are usually two forms of data exchange between applications:
time-critical and non-time-critical.

The time-critical form indicates that a specific action must be completed within a certain time window. If
communication cannot be completed within the required time window, control failure may occur.

202512 (V1.1) 24

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

Time-critical data is usually sent cyclically, which is called cyclic process data communication.
Non-time-critical data can be sent acyclically, and acyclic mailbox data communication is adopted in
EtherCAT.

2.2.1 Cyclic Process Data Communication

The master can use logical read, write, or read/write instructions to control multiple slaves at the same time.
In the cyclic data communication mode, the master and the slave have multiple synchronous operation
modes.

2.2.1.1 Slave Device Synchronization Mode

1. Freewheeling mode

In the freewheeling mode, the local control cycle is generated by a local timer interrupt. The cycle time can
be set by the master and is an optional feature for the slave. The local cycle in the freewheeling mode is
shown in Figure 2-16. Where T1 is the time it takes for the local microprocessor to copy data from the
EtherCAT slave controller and calculate the output data; T2 is the output hardware delay; and T3 is the input
latch offset time. These parameters reflect the time response performance of the slave.

Figure 2-16 Local Cycle in Freewheeling Mode

Local timer event Local timer event
Cycle time
—>
Min. cycle time
-
T1 T2 T3

Copy theT Get and copy

output) I the input
Output valid Input latch

2. Synchronization with data input and output events

The local cycle is triggered when a data input or output event occurs, as shown in Figure 2-17. The master
can write the sending cycle of the process data frame to the slave, while the slave can check whether it
supports this cycle time or optimize the cycle time locally. The slave can also choose to support this function.
It is usually synchronized with data output events. If the slave only has input data, the data is synchronized
with input events.

Figure 2-17 Local Cycle Synchronization with Data Input and Output Events

Data input/output event Data input/output event
(o | Cosaine |
Cycle time
~>
Min. cycle time
<t
T1 T2 T3

Copy theT Get and copy the
output input
Output valid Input latch

202512 (V1.1) 25

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

3. Synchronization with distributed clock synchronization events

The local cycle is triggered by an SYNC event, as shown in Figure 2-18. The master must complete the
transmission of the data frame before the SYNC event, so the master clock must also be synchronized with
the reference clock.

Figure 2-18 Local Cycle Synchronization with SYNC Events

SYNC event SYNC event
Cycle time
4>
Min. cycle time
-
T1 T2 T3
ControlT Get and copy the
output) input
Output valid Input latch

To further optimize slave synchronization performance, the master should copy the output information
from the received process data frame when a data sending and receiving event occurs, and then wait for the
SYNC signal to arrive before continuing local operations. As shown in Figure 2-19, the data frame must arrive
at least T1 earlier than the SYNC signal. The slave has completed data exchange and control operation
before the SYNC event, and can immediately perform output operations after receiving the SYNC signal,
thereby further improving synchronization performance.

Figure 2-19 Optimized Local Cycle Synchronization with SYNC Events

Data input/output event Data input/output event

SYNC event SYNC event

- -

Min. cycle time

< >

T1 T2 T3
<] 4—P | 4—>

Output valid Input latch

2.2.1.2 Master Device Synchronization Mode

1. Cyclicmode

In the cyclic mode, the master sends process data frames cyclically. The master cycle is usually controlled by
a local timer. The slave can run in the freewheeling mode or in synchronization with received data events.
For the slave running in synchronization, the master should check the cycle time of the corresponding
process data frame to ensure that it is greater than the minimum cycle time supported by the slave.

The master can send multiple cyclic process data frames with different cycle times in order to obtain the
optimal bandwidth. For example, a shorter cycle is used to send motion control data and a longer cycle is
used to send I/O data.

2. DCmode

The master runs in the DC mode similarly to the cyclic mode, except that the local cycle of the master should
be synchronized with the reference clock. The master's local timer should be adjusted based on the ARMW

202512 (V1.1) 26

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

message that publishes the reference clock. During operation, after the ARMW message used to dynamically
compensate for clock drift is returned to the master, the master clock can be adjusted based on the
reference clock time read back to be roughly synchronized with the latter.

In the DC mode, all DC-enabled slaves should be synchronized with the DC system time. The master should
also synchronize other communication cycles with the DC reference clock time. The working principle of
synchronizing the local cycle with the DC reference clock is shown in Figure 2-20.

Figure 2-20 Master DC Mode

Local timer event Local timer event

Application Application

Master offset
Additional offset DC Base
of master

Data] Data 0 |
[e [0] U | 2_
Transmission

< >

Precomputed fixed

_______ 0 f_fse_t_____-_____delay________l_Aa_Ste_r_
SYNC offset Slave
S0 | S0 |
SYNC ¢SYNC

The local operation of the master is started by a local timer. The local timer should have an advance over the
DC reference clock timing, which is the sum of the following times.

® Control program execution time
® Dataframe transmission time

® Dataframe transmission delay D
°

Additional offset U (related to the jitter of each slave delay time and the jitter of the control program
execution time, used for adjusting the master cycle)

2.2.2 Acyclic Mailbox Data Communication

Acyclic data communication in the EtherCAT protocol is called mailbox data communication, which can be
carried out in both directions - master-to-slave and slave-to-master. It supports full-duplex, bi-directional
independent communication and multi-user protocols. Slave-to-slave communication is managed by the
master acting as a router. The mailbox communication data header includes an address field so that the
master can resend the mailbox data. Mailbox data communication is a standard way to implement
parameter exchange and is required if cyclic process data communication needs to be configured or other
acyclic services are needed.

The mailbox data message structure is shown in Figure 2-21. Usually the mailbox communication value
corresponds to one slave, so the device addressing mode is used in the message. The data elements in its
data header are explained in Table 2-2.

202512 (V1.1) 27

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

Figure 2-21 Mailbox Data Unit Structure

Sub-message

header Data WKC
~
~
| =~
SN
Mailbox protocol data
| NN
~N
I ~
N
Mailbox data Command Command-associated data
header
I --------
| 160bit 16 bit 6 bit 2bit P — — —4bit_
Length 16 Address 132 Channel 38Prlorlty 40 Type 44 Counter
Table 2-2 Mailbox Data Header
Data Number of ..
.. Description
Element Digits
Length 16 The length of the followed mailbox service data
The slave address of the data source in the case of master-to-slave
communication
Address 16 S
The slave address of the data destination in the case of slave-to-slave
communication
Channel 6 Reserved
Priority 2 Reserved

Mailbox type, that is, the subsequent protocol type:

0: Mailbox communication error

2: EoE (Ethernet over EtherCAT)

Type 4 3: CoE (CANopen over EtherCAT)

4: FoE (File Access over EtherCAT)

5: SoE (Sercos over EtherCAT)

15: VoE (Vendor Specific Profile over EtherCAT)

The sequential number used for duplicate detection, increasing by 1 for
Counter Ctr 4 each new mailbox service (For compatibility with older versions, only 1-7
are used)

® Master-to-slave communication - mailbox write instruction

The master sends the data area write instruction to send the mailbox data to the slave. The master needs to
check the working counter WKC in the slave mailbox instruction response message. If the working counter is
1, it means the write instruction succeeded. On the contrary, if the working counter does not increase, it is
usually because the slave did not finish reading the previous instruction or did not respond within the
specified time, and the master must resend the mailbox data write instruction.

® Slave-to-master communication - mailbox read instruction

When the slave has data to send to the master, it must first write the data into the input mailbox buffer
cache and then the data is read by the master. If there is valid data waiting to be sent from the slave ESC
input mailbox data area, the master will send the appropriate read instruction to read the slave data as soon
as possible. The master has two ways to determine whether the slave has filled the mailbox data into the
input data area: one is to use FMMU to cyclically read a flag bit, and the flag bits of multiple slaves can be
read through logical addressing, but the disadvantage lies in that a FMMU unit is required for each slave; the
other is to simply poll the data area ofthe ESC input mailbox. The working counter of the read instruction
increases by 1, indicating that the slave has filled the new data into the input data area.

202512 (V1.1) 28

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

2.3 EtherCAT State Machine

The EtherCAT State Machine (ESM) coordinates the states of the master and slave applications at
initialization and runtime.

The EtherCAT device must support four states, in addition to an optional state.
Init: Initial, abbreviated as |

Pre-Op: Pre-operational, abbreviated as P

°
°
® Safe-Op: Safe-operational, abbreviated as S
® Op: Operational, abbreviated as O

°

Boot-Strap: Boot state (optional), abbreviated as B

The transition relationship between the above states is shown in Figure 2-22. When the Init state transits to
the Op state, the transition must be in the order of "Init = Pre-Op — Safe-Op — Op. Only when returning
from the Op state can the state be skipped, and other states cannot be skipped. The Boot-Strap state is an
optional state and can only transit to and from the Init state. All state changes are initiated by the master,
which sends a state control instruction to the slave to request a new state. The slave responds to the
instruction, executes the requested state transition, and writes the result to the slave state indication
variable. If the requested state transition fails, the slave will raise an error flag. Table 2-3 summarizes the
state transitions.

Figure 2-22 EtherCAT State Transition Relationship

| Initialization |
A A 4
A ey @)
Pre-operation | [BootStrap |
7 Y PP N
PS
on| om] 4]
| Safe operationJ
A
(SO) [(Os)
v
| Operation |

® |nit: Initial

The Init state defines the initial communication relationship between the master and the slave at the
application layer. At this time, the master and slave application layers cannot communicate directly, and the
master uses the Init state to initialize some configuration registers of the ESC. If the master supports mailbox
communication, the mailbox communication parameters are configured.

® Pre-OP: Pre-operational

In the Pre-Op state, mailbox communication is activated. The master and the slave can use mailbox
communication to exchange initialization operations and parameters related to the application. Process
data communication is not permitted in this state.

® Safe-Op: Safe-operational

In the Safe-Op state, the slave application reads input data but does not generate output signals. The device
has no output and is in a "safe state". At this time, mailbox communication is still possible.

® Op:Operational

In the Op state, the slave application reads data, the master application sends output data, and the slave
device generates output signals. At this time, mailbox communication is still possible.

® Boot-Strap: Boot state (optional)

The function of the Boot-Strap state is to download the device firmware program. The master can use the
mailbox communication of the FoE protocol to download a new firmware program to the slave.

202512 (V1.1) 29

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

Table 2-3 EtherCAT State Machine Transition Summary
State and State Transition

Description
There is no communication at the application layer, and the master can
only read and write ESC registers
The master configures the slave address register
If mailbox communication is supported, the mailbox channel
parameters are configured,; if distributed clocks are supported, DC
related registers are configured
The master writes the state control register to request the "Pre-Op"
state
Application layer mailbox data communication
The master uses the mailbox to initialize process data mapping
The master configures the SM channel used for process data
communication
The master configures the FMMU
The master writes the state control register to request the "Safe-Op"
state
The master sends valid output data
The master writes the state control register to request the "Op" state
Allinputs and outputs are valid, and mailbox communication can still
be used

Init

Init to Pre-OP (IP)

Pre-OP

Pre-Op to Safe-Op (PS)

Safe-Op

Op

2.4 EtherCAT Servo Drive Control Application Protocol

The IEC 61800 series of standards is a generic specification for adjustable speed electrical power drive
systems. IEC 61800-7 defines the standard for the communication interface between the control system and
the power drive system, including network communication technology and application profiles, as shown in
Figure 2-23. As a network communication technology, EtherCAT supports the profile CiA402 in the CANopen
protocol and the application layer of the SERCOS protocol, which are called CoE and SoE respectively.

Figure 2-23 |IEC 61800-7 Architecture

IEC 61800-7 --Generic interface and use of profiles for power drive systems
IEC 61800-7-1 Interface definition
General PDS Interface Specification

Annex A Annex B Annex C Annex D
Mapping of profile type 1 Mapping of Profile type Mapping of Profile type Mapping of Profile type
(CiA 402) 2 (CIP Motion) 3 (PROFIdrive) 4 (SERCOS)

IEC 61800-7-200 —Profile specifications

IEC 61800-7-201
Profile type 1
(CiA 402)

IEC 61800-7-202
Profile type 2
(CIP Motion)

IEC 61800-7-203
Profile type 3
(PROFIdrive)

IEC 61800-7-204
Profile type 4
(SERCOS)

IEC 61800-7-300 -Mapping of profiles to network technologies

IEC 61800-7-301
Mapping of profile

IEC 61800-7-302

IEC 61800-7-303

IEC 61800-7-304

type 1 to: .Mapping of profile .Mapping of profile || Mapping of profile
:CANopen type 2 to: o type 3 to: : type 4 to:
. EtherCAT o DeviceNet PROFIBUS o SERCOSI+I
. ETHERNET ControlNet PROFINET SERCOSIII
PowerLink EtherNet/IP EtherCAT

2.4.1 EtherCAT-based CAN Application Protocol (CoE)

CANopen device and application profiles are used across a wide range of devices and applications, such as

I/0O components, drives, encoders, proportional valves, hydraulic controllers, as well as application profiles

202512 (V1.1)

30

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

for the plastics or textile industries. EtherCAT can provide the same communication mechanism as the
CANopen mechanism, including object dictionaries, PDOs (process data objects) and SDOs (service data
objects), and even similar network management. EtherCAT can thus be implemented with minimum effort
on devices equipped with CANopen, and large parts of the CANopen firmware can be reused. In addition,
objects can be optionally extended to take advantage of the huge bandwidth resources provided by
EtherCAT.

The EtherCAT protocol supports the CANopen protocol at the application layer and makes corresponding
supplements, including the following main functions:

® Achieve network initialization by using mailbox communication to access CANopen object dictionaries
and objects.

® Achieve network management by using CANopen application objects and optional time-driven PDO
messages.

® Map process data by using object dictionaries and cyclically transmit instruction data and state data.

Figure 2-24 shows the CoE device structure whose communication modes mainly include cyclic process data
communication and acyclic data communication. The differences between the two in practical applications
will be explained below.

Figure 2-24 CoE Device Structure

EtherCAT device
‘ EtherCAT application ‘
Object dictionary Process data
‘ SDO ‘ ‘ PDO mapping ‘
A A
CoE CoE
‘ Mailbox ‘ ‘ Process data ‘
EtherCAT slave device
‘ Ethernet physical layer ’——»

2.4.1.1 CoE Object Dictionary

The CoE protocol fully complies with the CANopen protocol and has the same object dictionary definition,
as shown in Table 2-4. Table 2-5 lists the CoE communication data objects, which extend the relevant
communication objects 0x1C00-0x1C4F for EtherCAT communication to set the type of storage
synchronization manager, communication parameters, and PDO data allocation.

Table 2-4 CoE Object Dictionary Definition

Index Number Range Description
0x0000-0x0FFF Data type description
Communication objects include: device type, identifier, PDO
0x1000-0x1FFF mapping, CANopen-compatible CANopen-specific data objects, and
EtherCAT extended data objects reserved in EtherCAT
0x2000-0x5FFF Manufacturer-defined objects
0x6000-0x9FFF Profile-defined data objects
0xA000-0xFFFF Reserved

Table 2-5 CoE Communication Data Objects

Index Description
0x1000 Device type
0x1001 Error register

202512 (V1.1) 31

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

Index Description
0x1008 Equipment manufacturer and equipment name
0x1009 Manufacturer hardware version
0x100A Manufacturer software version
0x1018 Device identifier

0x1600-0x17FF RxPDO mapping
0x1A00-Ox1BFF TxPDO mapping
0x1C00 Synchronization manager communication type
Process data communication synchronization manager PDO
0x0x1C10-0x1C2F .
assignment
0x0x1C30-0x1C4F Synchronization management parameters

2.4.1.2 CoE Cyclic Process Data Communication (PDO)

In cyclic data communication, the process data can contain multiple PDO mapping data objects. The data
objects 0x1C10-0x1C2F used by the CoE protocol define the corresponding PDO mapping channels. Table
2-6 shows the specific structure of the communication data in the EtherCAT protocol.

Table 2-6 CoE Communication Data Objects

Index Object Type Description Type

0x1C10 Array SMO PDO assignment | Unsigned 16-bit integer
0x1C11 Array SM1PDO assignment | Unsigned 16-bit integer
0x1C12 Array SM2 PDO assignment | Unsigned 16-bit integer
0x1C13 Array SM3 PDO assignment | Unsigned 16-bit integer
Ox1C2F Array SM31 PDO assignment | Unsigned 16-bit integer

An SM2 PDO assignment example (0x1C12) is given below. Table 2-7 lists examples of its values. For example,
two data are mapped in PDOO. The first communication variable is the control word, and the corresponding
mapped index and sub-index address are 0x6040:00; the second communication variable is the target
position value, and the corresponding mapped index and sub-index address are 0x607A:00.

Table 2-7 Example of SM2 Channel PDO Assignment Object Data 0x1C12SM2

PDO Data Object Mapping
0X1C12
) Value) Number of .
Sub-index Sub-index Value Description
Bytes
0 3)) 1 Nu‘mberof PDO mapping
objects
0 5 1 Number of data mapping
1 PDOO objects
0x1600 1 0x6040:00 2 Control word
0x607A:00 4 Target position
0 5 1 Number of data mapping
1 PDO1 objects
0x1601 1 0x6071:00 2 Target torque
0x6087:00 4 Target slope
Number of data mapping
0 2 1 .
1 PDO2 objects
0x1602 1 0x6073:00 2 Maximum current
2 0x6075:00 4 Motor rated current

202512 (V1.1) 32

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

There are several ways for PDO mapping:

1. Simple devices do not require a mapping protocol: simple process data is used and read from the slave
EEPROM.

2. Read PDO mapping: fixed process data mapping; read using SDO communication.

3. Optional PDO mapping: multiple fixed groups of PDOs are selected through the object 0x1C1X; read
through SDO communication.

4. Variable PDO mapping: configured through CoE communication.
2.4.1.3 CoE Acyclic Process Data Communication (SDO)

The EtherCAT master realizes acyclic data communication by reading and writing mailbox data SM channels.
The CoE protocol mailbox data structure is shown in Figure 2-25.

Figure 2-25 CoE Data Header

8 bytes 2 bytes Up to 1478 bytes
Mailbox data header CoE command Command-related data
Type=3(CoE)

9 bits 3 bits 4 bits
No. ‘Reserved ‘ Type

The number in Figure 2-25 is explained in detail in Table 2-8.

Table 2-8 Definitions of CoE Instructions

Number of CoE

Instruction Field
Number Number when PDO is sent

Message type:

: Reserved

: Emergency message

: SDO request

: SDO response

: TxPDO

:RxPDO

: Remote transmission request of a TxPDO

: Remote transmission request of a RxPDO

: SDO message

9-15: Reserved

Description

Type

0 N o s WNKE O

® SDO service

CoE communication service types 2 and 3 are SDO communication services, and the SDO data structure is
shown in Figure 2-26.

Figure 2-26 SDO Data Frame Format

6 bytes 2 bytes Up to 1478 bytes
Mailbox data header CoE
Type=3(CoF) command Command-related data
Type=2 or 3 :
| 8 bits 16 bits 8 bits 32 bits 1-1470 bits
Sbo Index .SUb_ Data Optional data
control index

Standard CANopen data frame

SDO is usually divided into the following three types according to the transmission method. Table 2-9 lists

202512 (V1.1) 33

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

the specific content of the SDO data frame, and the results are shown in Figure 2-27.

1. Fasttransmission service: As with the standard CANopen protocol, only 8 bytes are used and up to 4
bytes of valid data can be transmitted.

2. Regular transmission service: More than 8 bytes can be used to transmit more than 4 bytes of valid data.
The maximum transmittable valid data depends on the storage area capacity managed by the mailbox
SM.

3. Segmented transmission service: When the amount exceeds the mailbox capacity, the data is
transmitted in segments.

Table 2-9 CoE Data Frame Content

SDO Control Standard CANopen SDO Service
Index Device object index
Sub-index Sub-index
Data Data in SDO
) There are 4 bytes of optional data that can be added to the data
Data (optional) frame

Figure 2-27 SDO Transmission Type

Fast transmission Regular transmission Segmented transmission
Mailbox data header Mailbox data header Mailbox data header
Mailb CoE CoE CoE
ailbox storage Data < 4 bytes 4 bytes < data R .
capacity < mailbox size Data > mailbox size

Mailbox data header
CoE

Mailbox data header
CoE

Mailbox data header
CoE

If the data to be transmitted is larger than 4 bytes, the regular transmission service is used. In regular
transmission, the 4 data bytes used in fast transmission represent the complete size of the data to be
transmitted, and the extended data part is used to transmit the valid data. The maximum capacity of the
valid data is the mailbox capacity minus 16.

2.4.2 Servo Drive Profiles According to IEC 61800-7-204 (SERCOS)

Serial Real-time Communication System (SERCOS) is recognized as a communication interface for
high-performance real-time systems, especially for motion control applications. The profiles for its servo
drive and communication technology fall within the scope of the IEC 61800-7-204 standard. The key points
regarding the integration and compatibility of SERCOS and EtherCAT are listed below:

Mapping of SERCOS and EtherCAT (SoE): The mapping of the servo drive profiles of SERCOS to EtherCAT is
defined in Part 304 of the IEC 61800-7-204 standard. SoE (SERCOS over EtherCAT) provides an EtherCAT
mailbox-based access method for SERCOS servo drive parameters and functions.

Parameter access and service channel: The service channel for access to all parameters and functions in the
drive is based on the EtherCAT mailbox. This approach ensures the compatibility of EtherCAT with the
existing SERCOS protocol and enables access to the value, attributes, name, unit, and other information of
IDN (SERCOS identifier).

202512 (V1.1) 34

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

Data transmission mechanism: SERCOS process data (AT and MDT format data) is transmitted through the
EtherCAT device protocol mechanism, and its mapping method is similar to that of SERCOS. In this way,
SERCOS data can be efficiently transmitted in the EtherCAT network.

State machine mapping: The EtherCAT slave state machine can be easily mapped to the states of the
SERCOS protocol. This state machine mapping makes the integration of SERCOS and EtherCAT smoother,
ensuring compatibility and interoperability between the two.

Scalability and data length limitation: While ensuring compatibility, EtherCAT also focuses on scalability
related to data length limitations. This scalability ensures that EtherCAT can flexibly respond to different
data requirements when processing complex applications.

2.4.2.1 SoE State Machine

A comparison between the communication phases of the SERCOS protocol and the EtherCAT State Machine
is shown in Figure 2-28. The SoE protocol has the following features:

1. SERCOS protocol communication phases 0 and 1 are overwritten by the EtherCAT Init state.

2. The communication phase 2 corresponds to the Op state, allowing the use of mailbox communication to
implement service channels and manipulate IDN parameters.

3. The communication phase 3 corresponds to the Safe-Op state, where cyclic data transmission begins. At

this time, only input data is valid, and output data is ignored. Meanwhile, clock synchronization can be
achieved.

4. The communication phase 4 corresponds to the Op state, where all inputs and outputs are valid.

5. The phase switching process instructions S-0-0127 (communication phase 3 switching check) and
S-0-0128 (communication phase 4 switching check) of the SERCOS protocol are not used and are
replaced by PS and SO state transitions respectively.

6. The SERCOS protocol only allows a high-level communication phase to switch down to the
communication phase 0, while EtherCAT allows any state to switch down, as shown in Figure 2-28 a). For
example, transition from the Op state to the Safe-Op state, or from the Safe-Op state to the Pre-Op state.
SoE should also support this transition, as shown in Figure 2-28 b). If the slave does not support it, an
error bit shall be set in the EtherCAT AL State Register.

Figure 2-28 SoE State Machine

EtherCAT IEC 61784
CPF 16
‘ Initialization Communication phase 1 ‘
(IP)| (P1)
‘ Pre-operation ‘ (SN om;::;\éc;tion
(01 (PS% (5P s-o-0127$
: Communication
oP ‘ Safe operation ‘ phase 3 (with
i t
(S0) (08S) input]
S-O-0128W
‘ Operation ‘ ‘ Communication phase 4 ‘
a) EtherCAT state machine b) SERCOS state machine

2.4.2.2 IDN Inheritance

The SoE protocol inherits the DIN parameter definition of the SERCOS protocol. Each IDN parameter has a
unique 16-bit IDN, which corresponds to a unique data block that stores all information about the
parameter. The data block consists of 7 elements, as listed in Table 2-10. IDN parameters are divided into
two parts: standard data and product data. Each part is divided into 8 parameter groups, which are
represented by different IDNs, as listed in Table 2-11.

202512 (V1.1) 35

INVT Medium and Large-Scale PLC Programming Manual

EtherCAT Operation Mechanism

Table 2-10 IDN Data Block Structure

Number Name

Element 1 IDN

Element 2 Name

Element 3 Attribute
Element 4 Unit

Element5 Minimum allowable value
Element 6 Maximum allowable value
Element7 Data value

Table 2-11 IDN Number Definition

Bit 15 14-12 11-0
Meaning Classification Parameter group Parameter number
Value 0: Standard data S; 1: Product data P | 0-7: 8 parameter groups 0000-4095

When EtherCAT is used as the communication network, some IDNs in the SERCOS protocol for
communication interface control are deleted, as listed in Table 2-12. And the definitions of some IDNs are
modified, as listed in Table 2-13.

Table 2-12 Deleted IDNs

IDN Description
S-0-0003 Shortest AT transmission starting time
S-0-0004 Transmit/receive transition time
S-0-0005 Minimum feedback processing time
S-0-0009 Position of data record in MDT
S-0-0010 Length of MDT
S-0-0088 Receive to receive recovery time
S-0-0090 Instruction value proceeding time
S-0-0127 CP3 transition check
S-0-0128 CP4 transition check
Table 2-13 Modified IDNs
IDN Orlg.lna.\l Updated Description
Description
$.0-0006 AT transmission Time offset in which an application writes AT data to the ESC
starting time storage area after a synchronization signal within the slave.
S-0-0014 Interface status Mapping of slave DL state and AL state code
S-0-0028 MST error counter |Mapping of slave RX error counter to loss counter
$-0-0089 MDT transmission |Time offset of obtaining new MDT data from the ESC storage
starting time area after a synchronization signal within the slave

2.4.2.3 SoE Cyclic Process Data

The output process data (MDT data content) and input process data (AT data content) are configured by
S-0-0015, S-0-0016, and S-0-0024. Process data does not include service channel data and only includes
cyclic process data. The output process data includes servo control words and instruction data, while the

input process data includes status words and feedback data. S-0-0015 sets the type of cyclic process data, as

listed in Table 2-14, and the definitions of parameters S-0-0016 and S-0-0024 are listed in Table 2-15. The

master writes these three parameters through mailbox communication in the "Pre-Op" phase to configure
the content of cyclic process data.

202512 (V1.1)

36

INVT Medium and Large-Scale PLC Programming Manual

EtherCAT Operation Mechanism

Table 2-14 Definition of parameter S-0-0015

bytes)

S-0-0015 Instruction Data Feedback Data
0: Standard type 0 N/A No feedback data
T instruction S-0-0080 (2
1: Standard type 1 orque Instruction (No feedback data

2: Standard type 2

Speed instruction S-0-0036 (4
bytes)

Speed feedback S-0-0053 (4
bytes)

3: Standard type 3

Speed instruction S-0-0036 (4

Position feedback S-0-0051 (4

bytes)

bytes) bytes)

Position instruction S-0-0047 (4 |Speed feedback S-0-0053 (4
4: Standard type 4

bytes) bytes)

Position feedback S-0-0051 (4

Position instruction S-0-0047 (4 |bytes)

bytes) Or speed feedback S-0-0053 (4
5: Standard type 5 . .

Speed instruction S-0-0036 (4 bytes) +

Position feedback S-0-0051 (4
bytes)

6: Standard type 6

Speed instruction S-0-0036 (4
bytes)

No feedback data

7: Customized

S-0-0024 configuration

S-0-0016 configuration

Table 2-15 Definitions of parameters S-0-0016 and S-0-0024

Data Word S-0-0024 Definition S-0-0016 Definition
0 Maximum length of output data | Maximum length of input data
(Word) (Word)
1 Actual length of output data Actual length of input data
(Word) (Word)
5 First IDN of instruction data First IDN of feedback data
mapping mapping
3 Second IDN of instruction data | Second IDN of feedback data
mapping mapping

2.4.2.4 SoE Acyclic Service Channel

The EtherCAT SoE Service Channel (SSC) is implemented by the EtherCAT mailbox communication function

and used for acyclic data exchange, such as reading/writing IDNs and their elements. The SoE data header

format is shown in Figure 2-29.

6 bytes

Figure 2-29 SoE Data Header Format

4 bytes

Up to 1476 bytes

Mailbox data header

SoE command

Command-related

type=5(SoE) data
| 3bits 1bit 1bit 3 bits 8 bits 16 bits |
Operation
Command s“bzea?:e" Error | Address element IDN
identification
Table 2-16 Description of SoE Data Instructions
Data Area Description
. i.e. the instruction type:
Instruction yp
0x01: Read request

202512 (V1.1)

37

INVT Medium and Large-Scale PLC Programming Manual EtherCAT Operation Mechanism

Data Area Description

0x02: Read response

0x03: Write request

0x04: Write response

0x05: Notification

0x06: Slave information

0x07: Reserved

Subsequent data signal:

Subsequentdata |0x00: No subsequent data frame

0x01: The transmission is not completed and there are subsequent data frames

Error signal:
Error 0x00: No error
0x01: An error occurred, and the data area has a 2-byte error ID
Address Specific address of the slave device

Operation element |Element selection for single element operation, defined by bit, with each bit

identification corresponding to one element; number of elements for addressing constructs
IDN number of the parameter, or the remaining segments during the segment
operation

IDN

Commonly used SSC operations include SSC read operations, SSC write operations, and SSC process
instructions.

SSC read operation: The master initiates the SSC read operation and writes the SSC request to the slave.
After receiving the read operation request, the slave responds with the requested IDN number and data
value. The master can read multiple elements at the same time, so the slave should answer multiple
elements. If the slave only supports single element operation, it should respond with the first element
requested.

SSC write operation: This operation is used to download data from the master to the slave, which should
answer with the result of the write operation. Segment operation consists of one or more segmented write
operations and an SSC write response service.

SSC process instruction: It is a special acyclic data. Each process instruction has a unique IDN and specified
data elements, which are used to start certain specific functions or processes of the servo device. It usually
takes a while to execute these functions or processes. The process instruction only triggers the start of the
process, so after that, the service channel it occupies will become immediately available for the transfer of
other acyclic data or process instructions. There is no need to wait until the triggered functions or processes
complete their execution.

202512 (V1.1) 38

INVT Medium and Large-Scale PLC Programming Manual Axis State Mechanism

3 Axis State Mechanism

3.1 Axis State Transition

Axis state transition is designed based on the PLCopen state machine diagram. The specific transition is
shown in Figure 3-1.

Figure 3-1 Axis State Transition

MC_Gearln (Slave)
MC_GearlnPos (Slave)
MC_Camin (Slave)
MC_CombineAxes (Slave)

Synchronized
Motion

MC_MoveAbsolute
MC_MoveRelative
MC_MoveAdditive
MC_PositionProfile
MC_Halt
(MC_MoveSuperimposed

MC_MoveVelocity
MC_VelocityProfile
MC_AccelerationProfile
MC_TorqueControl
MC_MoveContinuousAbsolute
MC_MoveContinuousRelative

Continuous
Motion

A

Note 1

Note 3

MC_Home

Homing

Note 1: From any state. An error in the axis occurred.

Note 2: From any state. MC_Power.Enable = FALSE and there is no error in the axis.
Note 3: MC_Reset AND MC_Power.Status = FALSE

Note 4: MC_Reset AND MC_Power.Status = TRUE AND MC_Power.Enable = TRUE
Note 5: MC_Power.Enable = TRUE AND MC_Power.Status = TRUE

Note 6: MC_Stop.Done = TRUE AND MC_Stop.Execute = FALSE

® When the axis is standstill, it can transit to various operational states.
® |tcan transit to the standstill state from multiple states.

® Discrete motion, synchronized motion, and continuous motion states can be switched directly with
each other.

® |fanalarm occurs on the servo axis (Errorstop), the MC_Reset and MC_Power instructions must be run
first to put the axis into the standstill state before the axis can run again.

® |fthe MCinstruction is not used to instruct the axis to move according to the above transition diagram,
the axis will not respond and an error alarm message will be generated from the MC function block.

202512 (V1.1) 39

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

4 Basics of Programming

4.1 Variable

Variables are to-be-processed abstract data stored in the memory. They are names used to identify PLC
input/output and storage areas within the PLC, and can replace physical addresses in programs. Data values
stored in the variables can be changed at any time as needed. During program execution, the value of a
variable can change.

Before using a variable, you must declare it and specify its type and name. A variable has a name, type, and
value. The data type of a variable determines the size and type of memory it represents. A variable name is
an identifier in the program source code.

4.1.1 Variable Declaration

Variable declaration is to specify the name, type, and initial value of a variable. Variable declaration is very
important. Undeclared variables cannot pass compilation and therefore cannot be used in the program.
Users can declare variables in the Program Organization Unit (POU), Global Variable List (GVL), and
Auto-Declare dialog box. In Invtmatic Studio applications, variable declaration is divided into two categories:
normal variable declaration and direct variable declaration.

® Normalvariable declaration

It is the most commonly used variable declaration, which does not need to be associated with hardware
peripherals or communications and is only used for internal logic of the project. Normal variable declaration
must comply with the following rules:

<ldentifier>:<data type>{:=<initial value>};
The partin {} is optional, such as: nTest:BOOL;, nTest:BOOL:=TRUE;
® Directvariable declaration

In Invtmatic Studio applications, this declaration is required when you need to map variables with the 1/0
modules of the PLC or communicate with external devices over the network. You can use the keyword AT to
directly link a variable to a specific address. Direct variable declaration must comply with the following
rules:

AT<address>:
<ATidentifier>AT<address>:<data type>{:=<initialization value>};
The partin {} is optional.

Direct variable declaration starts with "%", followed by the position prefix symbol and the size prefix symbol.
If there is a grade, the grade is represented by an integer and a decimal point symbol ".", such as %IX0.0
and %QWO. The specific format of direct variable declaration is shown in Figure 4-1.

Figure 4-1 Direct Variable Declaration

Identifier AT Address : data type;
<Identifier @ @ Byte —(Bit)
- N

e

S

202512 (V1.1) 40

INVT Medium and Large-Scale PLC Programming Manual

Basics of Programming

I: input unit; Q: output unit; M: memory cell. The size prefixes are defined as shown in Table 4-1.

Table 4-1 Definitions of Size Prefixes

Prefix Symbol Definition Conventional Data Type

X Bit BOOL

B Byte BYTE

W Word WORD

D Double word DWORD

L Long word LWORD

R Internal variables without specified positions are automatically

allocated by the system.

[Example 4.1] A variable of double word type Varl is defined in the program. If you need to fetch part of the
data in the variable and convert it into a variable of Boolean, byte, or word type, what is its starting address
and how to convert it?

VAR
Varl
END_VAR

AT%ID48 :DWORD;

%I indicates that this variable belongs to the input unit, and its specific address is %ID48. Table 4-2 lists that
when addressing, the system will make allocation according to the size of the data type (X: bit, B: byte, W:
word, D: dword).

In the address memory map, the word addresses %IW96 and %IW97 are combined to correspond to %ID48,
because the byte starting address after 48*2 (bytes) is 96. Similarly, the four byte variables of byte
addresses %IB192, %IB193, %IB194, and %IB195 correspond to %ID48 when combined, because the
corresponding byte starting address after 48*4 (bytes) is exactly 192.

Table 4-2 Memory Map

%IX 192.0-192.7 193.0-193.7 194.0-194.7 195.0-195.7
%IB 192 193 194 195
%IW 96 97

%ID 48

[Example 4.2] Based on [Example 4.1], it is easy to understand the following address mapping relationship.
%MX12.0: the first digit of %MB12.

%IW4: the input word unit 4 (byte units 8 and 9).

%Q™*: output in a specific location.

%IX1.3: the third bit of the first byte unit of input.

4.1.2 Data Type

Whether you are declaring a variable or a constant, you must use a data type. The standardization of data
types is an important sign of openness of programming languages. In Invtmatic Studio, data types fully
comply with the standards defined by IEC 61131-3. Invtmatic Studio divides data types into standard data
types, extended data types of the IEC1131-3 standard, and custom data types. The data type determines
how much storage space it will occupy and what type of value it will store.

The data types in Invtmatic Studio fall into five categories: Boolean type, integer type, real number type,
string type, and time data type. Table 4-3 lists the standard data types supported by Invtmatic Studio.

202512 (V1.1) 41

INVT Medium and Large-Scale PLC Programming Manual

Basics of Programming

Table 4-3 Standard Data Types

Data Data Type Keyword Number Value Range
Category P y of Digits g
Boolean Boolean BOOL 1 FALSE (0) or TRUE (1)
Byte BYTE 8 0-255
Word WORD 16 0-65535
Double word DWORD 32 0-4294967295
Long word LWORD 64 0-(254-1)
Short integer SINT 8 -128-127
Unsigned
nsigne USINT 8 0-255
short integer
Integer INT 16 -32768-32767
Integer Unsiened
nsigne UINT 16 0-65535
integer
Double
. DINT 32 -2147483648-2147483647
integer
Unsigned
double UDINT 32 0-4294967295
integer
Long integer LINT 64 -263-(283-1)
Real Real number REAL 32 1.175494351e-38-3.402823466e+38
Long real 2.2250738585072014e-308-
number LREAL 64
number 1.7976931348623158e+308
String String STRING 8*N -
TIME THOMS-T#71582m47s295ms
TIME_OF_DAY TOD#0:0:0-TOD#1993:02:47.295
Time data | Storage time DATE 32 D#1970-1-1-D#2106-02-06
DT#1970-1-1-0:0:0-
DATE_AND_TIME
DT#2106-02-06-06:28:15

4.1.2.1 Boolean

Boolean variables are used to represent TRUE/FALSE values. A Boolean variable has only two states: TRUE or
FALSE. In Invtmatic Studio, it can also be represented by 0 or 1.

Memory Usage
8 digits

Type
BOOL

[Example 4.3] Assign the AND logic result of the door opening signal and the material gripping signal to the
Boolean variable bReady. The structured text language code is as follows.

VAR
bReady,bDoors_Open,bGrip:BOOL;
END_VAR
bReady:=(bDoors_Open and bGrip);
In Invtmatic Studio, variables of the same type can be declared uniformly and separated by ",".

[Example 4.4] Assign the decimal number 211 to the variable bReady. The structured text language code is
as follows.

VAR
bReady:BOOL;
END_VAR

202512 (V1.1) 42

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

bReady:=211;
Assigning integer data to Boolean data is obviously incorrect. After program compilation, the compiler will

return an error message "C0032: Cannot convert "USINT" to "BOOL".

Boolean variables are the most commonly used variable type. Therefore, it is crucial to learn how to use
them correctly since they are often used in process control statements (such as IF, CASE, and loop
statements).

Note: If the lowest bit in the memory is set (e.g. 2#00000001), the BOOL type variable is "TRUE". If the
lowest bit in the memory is not set, the BOOL variable is FALSE, for example 2#00000000. All other values
cannot be converted correctly and are displayed as (***INVALID:16#xy*** during online monitoring). Similar
problems may occur, for example, if overlapped memory ranges are used in a PLC program.

For example, if you define a Boolean array, A:ARRAY[0..7]JOFBOOL, the total memory it occupies in the
system is not an 8-bit byte but eight 8-bit bytes.
4.1.2.2 Integer

The integer type represents whole numbers without decimal points. In Invtmatic Studio, integer is the
largest standard category with the most members. There is no need to memorize the keywords of each type.
As long as you understand the rules, it is very easy to remember them. The following briefly explains the
rules of integer prefixes.
® U_represents an unsigned data type, and U is the abbreviation of Unsigned.
® S_represents the short data type, and S is the abbreviation of Short.
® D_represents the double data type, and D is the abbreviation of Double.
® | indicatesthe long data type, and L is the abbreviation of Long.
For example, UINT represents unsigned integer data, USINT represents unsigned short integer data, and
LINT represents long integer data.
[Example 4.5] Example of integer data.

VAR

nValuel:USINT;

nValue2:LINT,;

nValue3:WORD;

END_VAR

nValuel:=4;
nValue3:=16;
nValue2:=nValuel+nValue3;
The final output result of nValue2 after program running is 20.
The difference between unsigned data and signed data lies in the highest bit.

For unsigned data, all storage space is used to store data without a sign bit. For example, a UINT type
variable uses all the 16 bits to store data, that is, the data range is 0-65535.

For signed data, the highest bit is used as the sign bit. For example, if the highest bit is used as a sign bit for
an INT type variable, and the remaining 15 bits are used for data storage, the data range is -32768-32767.
Therefore, the range of positive numbers that can be stored in a signed integer variable is half that of an
unsigned integer variable.

Here are two examples of unsigned and signed variables:
nValuel:UINT;
nValue2:INT;

202512 (V1.1) 43

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

Figure 4-2 Unsigned and Signed Data Structures
First bit of

data }

nValuel |1 |1 11 (1 11|11 1[1]1]1]1|1]1]| =65535
nvalue2 [0 |1 |11 (1|1 |1 |1 (1|11 111|171 =32767

Sign bit J

4.1.2.3 Real Number

Real numbers, also called floating-point numbers, are mainly used to process numerical data containing
decimals. The real number type includes two data types: REAL and LREAL. REAL real numbers occupy 32 bits
of storage space, while LREAL long real numbers occupy 64 bits of storage space. In Invtmatic Studio, there
are two representations for real and long real constants.

1. Decimalform

It consists of numbers and a decimal point. 0.123, 123.1, and 0.0 are all decimal numbers.

2. Exponential form

For example, 123e3 or 123E3 both represent 123X 1032, However, it should be noted that there must be a

number before the letter e (or E), and the exponent after e must be an integer. For example, €3, 2.1e3.5, .e3,
e, etc. are all ungrammatical exponential forms.

A floating-point number can have multiple exponential representations, for example, 123.456 can be
represented as 123.456€0, 12.3456e1, 1.23456€2, and so on. Here, 1.23456¢€2 is called the "normalized
exponential form". That is, in the decimal part before the letter e (or E), there should be one (and only one)
non-zero digit to the left of the decimal point.
[Example 4.6] Assign 12.3 to the rRealVarl variable. The structured text language code is as follows:

VAR

rRealVarl:REAL;

END_VAR

RealVarl:=1.23el;
In Example 4.6, 1.23el means 12.3. Of course, you can also use the expression RealVarl:=12.3 to meet the
requirement in the above example.
At this time, if the requirement is changed to assigning 0.123 to the rRealVarl variable, according to the rules
mentioned above, you only need to change the expression to:

RealVarl:=1.23e-1;

or,

RealVarl:=0.123;
Note: Support for the data type LREAL depends on the target device.

During compilation, whether the 64-bit LREAL type is converted to REAL (with possible information loss) or
remains unchanged requires reference to the corresponding documentation of different hardware products.
If a REAL or LREAL data type is converted to an SINT, USINT, INT, UINT, DINT, UDINT, LINT or ULINT data type
and the value of the real data type is outside the range of the integer, the result will be uncertain and the
value depends on the target system.

This situation may generate an exception. In order to get target-independent codes, all range outliers
should be processed by the application If REAL or LREAL data are within the range of the integer, conversion
between them can be performed on all systems.

202512 (V1.1) 44

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

4.1.2.4 String

A string is a sequence of characters. String constants use single quotes as their prefix and suffix. You can also
enter spaces and special characters such as ampersands. These characters are treated like all other
characters. In Invtmatic Studio, a string type variable can contain any string of characters, enclosed in single
quotes. For example, 'Hello', 'How are you', and 'why?' are all constant strings. The declared size determines
the storage space required to store the variable. The storage space here refers to the number of characters
in the string, enclosed in parentheses or square brackets. The specific operation and declaration methods
are as follows.

® [fthe string size is not specified when the variable is defined, the system will allocate 80 characters to
the variable by default, and the actual storage space occupied in the system = [80+1] bytes.

For example, Str1:STRING:='a' is defined in the variable declaration. Although the actual initial value of the
Strl variable contains only one character, no brackets are used in the declaration to limit the string size.
Therefore, the memory space occupied by Strl in the system is 80+1 bytes.

® [fthe size is defined, the actual storage space occupied in the system = [(the defined string size) + 1]
bytes. In Invtmatic Studio, there is generally no limit on the length of a string, but string functions can
only process strings with a length between 1 and 255 characters. For example, to define two strings, the
statements are as follows:

Str1:STRING[10]:='a";
Str2:STRING:='a";

The above two statements are similar except that there is an additional storage space limit [10] in the first
statement. Figure 4-3 shows the difference between these two statements in the program memory. On the
left, since Strl is limited to 10 bytes, the actual byte size occupied in the program is 10+1 or 11 bytes. The
default allocation for Str2 is 80 characters, and the actual size is 80+1 or 81 characters.

Figure 4-3 String Storage Mode

Address Str1 Address Str2
1 a 1 a
2 2
3 3
4 4
5 5
10 80
(1] [57]

Generally speaking, the default size of 80 characters can satisfy most applications. However, if the
application contains a large amount of string data, but the actual character data in each string is very small,
this will cause a large waste of data storage area. Limiting the size can save a lot of storage space for other
variables. If a variable is initialized with a string and the string is too long for the variable's data type, the
string will be truncated accordingly from right to left.

When a string is represented in a program, single quotes 'XXX' are required to distinguish it from normal
variables.

[Example 4.7] Assign the string 'HelloCoDeSys' to the str variable.
VAR
str:STRING;
nNum:WORD;
END_VAR
str:='"HelloCoDeSys';

202512 (V1.1) 45

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

nNum:=SIZEOF(str); (*Use the SIZEOF instruction to view the storage space usage*)

The result of program execution is shown in Figure 4-4. The actual number of characters in 'HelloCoDeSys' is
13 and occupies a storage space of 14 bytes. However, the output result of the SIZEOF instruction is 81 bytes.
This is because the string size is not specified and the system automatically allocates 80 characters to the str
variable.

Figure 4-4 String Instance Running Results

Device Application.PLC_PRG

Expression Type Value
& str STRING ‘HelloCoDeSys'
% nNum WORD 81

2 str] HeloCoDeS b |:="HelloCoDeSys';
[E[~ ntun{"s1_J:=s1280F (stx_nelocsbes » | ;[Feroan

[Example 4.8] Assign the string 'HelloCoDeSys' to the str variable, which is defined as 12 characters in size.
VAR
str:STRING[12];
nNum:WORD;
END_VAR
str:="HelloCoDeSys",
nNum:=SIZEOF(str);
The actual result of program execution is shown in Figure 4-5.

Figure 4-5 String Instance Running Results

Device Application.PLC_PRG

Expression Type Value
@ str STRING(12) ‘HelloCoDeSys'
@ nhum WORD 13

<

-

[Z[~ o2 J:=SIZEOF (sor|_nelecenes ») s erua] |

It can be seen from the running results that str only shows 'HelloCoDeSy', missing an 's', which means that
the redundant part has been automatically truncated by the system. The storage space occupied by the
string is 13 bytes.

4.1.2.5 Time Data
Time data types include TIME, TIME_OF_DAY/TOD, DATE, and DATE_AND_TIME/DT. The system processes
this data internally in a similar way to the double word (DWORD) type.

1. TIME: time, accurate to millisecond (ms), and ranging from 0 to 71582m47s295ms. The syntax format is
as follows.

t#<time declaration>

A TIME constant always consists of a start character T or t (or TIME or time) and a numeric identifier #. Then,
the actual time declaration follows, including day (d flag), hour (h flag), minute (m flag), second (s flag), and
millisecond (ms flag). It should be noted that the time items must be set according to the order of time

length units (i.e., d before h, h before m, m before s, s before ms), but not all time length units need to be
included.

Examples of correct use of time constants in ST language assignment statements are as follows:
TIMEL:=T#14m:s;
TIME1:=T#100S12ms;

(*The value of the highest unit can exceed its limit*)

202512 (V1.1) 46

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

TIMEL:=t#12h34m15s;
[Example 4.9] Definition and use of time type variables.
VAR
tTime:TIME;
END_VAR
tTime:=T#3d19h27m41slms;

Note: Time can overflow, for example, the hour can exceed 24 h. If T#3d29h27m41s1ms is written during
value assignment, the system will automatically correct the final output result to T#4d5h27m41s1lms.

The following time constant assignment is incorrect.
tTime:=15ms; (*T# is missing*)
tTime:=t#4ms13d; (*wrong order*)

2. TIME_OF_DAY/TOD: Time of day, accurate to millisecond (ms), and ranging from 0:0:0 to
1193:02:47.295. The time of day declaration uses the format of "<hour:minute:second>". The syntax
formatis as follows.

tod#<time declaration>
In addition to "tod#", you can also use "TOD#", "time_of_day", and "TIME_OF_DAY".
[Example 4.10] Definition and use of time of day type variables.
VAR
tTime_OF_DAY:TIME_OF_DAY;
END_VAR
tTime_OF_DAY:=TOD#21:32:23.123;
The time expressed by the above statement is 21h:32m:23s:123ms.

3. DATE: Date, accurate to day (d), and ranging from 1970-01-01 to 2106-02-06. Date declaration uses the
format "<year-month-day>". The syntax format is as follows.

dt#<date declaration>

In addition to "d#", you can also use "D#", "date", and "DATE". These constants can be used to enter dates.
When declaring a DATE constant, you can enter the start character d, D, DATE, or date followed by a # sign.
Then, you can enter any date in the format YYY-MM-DD.

[Example 4.11] Definition and use of date type variables.
VAR
tDate:DATE;
END_VAR
tDate:=D#2014-03-09;
The time expressed by the above statement is March 9, 2014.

4. DATE_AND_TIME/DT: Date and time, accurate to second (s), and ranging from 1970-01-01-00:00 to
2106-02-06-06:28:15. The declaration of date and time uses the format of
"<year-month-day-hour:minute:second>" and the syntax s as follows.

dt#<date and time declaration>
In addition to "dt#", you can also use "DT#", "date_and_time", and "DATE_AND_TIME".
[Example 4.12] Definition and use of date and time type variables.

VAR

tDT:DATE_AND_TIME;

END_VAR

tDT:=DT#2014-03-09-16:22:31.223,;

202512 (V1.1) 47

INVT Medium and Large-Scale PLC Programming Manual

Basics of Programming

The time expressed by the above statement is 16h:22m:31s:223ms on March 9, 2014.
4.1.3 Variable Type

Table 4-4 Types of Variables

Keyword of .) External Internal
) Variable Attribute . .
Variable Type Read/Write| Read/Write
VAR Local variable - R/W
VAR_INPUT Input variable, provided externally R/W R
Output variable, provided by internal variables to
VAR_OUTPUT . W R/W
external devices
VAR_IN_OUT |Input-output variable R/W R/W

. hich -
VAR_GLOBAL Glob'al varl.able, which can be used in all R/W RW
configurations and resources

Temporary variable, which are used by programs and
VAR_TEMP . . - R
function blocks for internal storage

Static variable - -

External variable, which can be modified within the
VAR_EXTERNAL . . R/W R/W
program, but must be provided by global variables

VAR_STAT

VAR, VAR_INPUT, VAR_OUTPUT, and VAR_IN_OUT are the most commonly used variable types in program
organization units (POUs). VAR_GLOBAL is also used extensively in actual engineering projects.

4.1.4 Persistent Variable

Table 4-5 List of Variable Attributes

Keyword of Additional Variable
y Additional Variable Attribute

Attribute
RETAIN Retain variable, used for power failure retention
PERSISTENT Persistent variable

VAR RETAIN PERSISTENT
VAR PERSISTENT RETAIN
CONSTANT

With the same function, both are persistent variables used for
power failure retention
Constant

PERSISTENT

Currently, only a few PLCs still retain independent memory areas for storing PERSISTENT type data. In
Invtmatic Studio, the original power failure retention function is canceled and replaced with
VARRETAINPERSISTENT or VARPERSISTENTRETAIN, which are exactly the same in function.

The declaration format of a PERSISTENT type variable is as follows:
VARGLOBALPERSISTENTRETAIN
<identifier>:<data type>;
END_VAR

Memory storage location: Like RETAIN variables, RETAINPERSISTENT and PERSISTENTRETAIN variables are
also stored in a separate memory area.

Resetting of persistent variables:

Retain variables are identified with the keyword "RETAIN". These variables always retain their values, even
after an abnormal or normal shutdown of the controller or when the "warm reset" instruction is executed.
When the program is re-run, the stored values undergo further processing. A specific example is that a pie
counter on a production line restarts counting after a power failure. In this case, all other variables are
reinitialized rather than using their initialization values or standard initialization values. In contrast to
persistent variables, retain variables are reinitialized when the program executes a new download.

202512 (V1.1) 48

INVT Medium and Large-Scale PLC Programming Manual Basics of Programming

Persistent variables are identified by the keyword "PERSISTENTRETAIN". Unlike retain variables, these
variables continue to retain their values after a re-download or after executing the instruction "cold reset" or
"original reset". Table 4-6 shows which online instructions will reset persistent variables when executed.

Table 4-6 List of Online Instruction Behaviors for Persistent Variables

Online
Instruction
Warm reset - X
Cold reset - -
Original reset - - -

Download -
Online change X X
Re-download - X

VAR VAR RETAIN VAR PERSISTENT RETAIN

>

>

X< [X< | X

#'Note: "X" = Retention value, "-" = Initial value.

202512 (V1.1) 49

INVT Medium and Large-Scale PLC Programming Manual Programming Language

5 Programming Language

5.1 Overview

Different engineering applications have different optimal programming methods, and each programming
language has its own characteristics. You can choose the appropriate programming language according to
the needs of the actual engineering application. The following briefly introduces Invtmatic Studio's 6
languages with different characteristics.

1.

Structured Text (ST): Its advantages lie in that it can realize complex operation control and requires
high skills of programmers, while its disadvantages lie in that the code needs to be converted into
machine language during compilation, which will lead to long compilation time, slow execution speed,
and poor intuitiveness and ease of operation.

Ladder Diagram (LD): It corresponds to the electrical diagram. Its advantage lies in its intuitiveness,
which is easy for electrical technicians to learn and master, while its disadvantage lies in that the
program description is often not clear enough when dealing with complex control system
programming. Ladder Diagram is the most widely used PLC programming language in the domestic
industrial automation field.

Function Block (FBD): With function blocks as design units, we can start from the control function. Its
advantages lie in that it facilitates the analysis and understanding of control schemes, is intuitive and
easy to master, and has good operability. When dealing with complex control systems, it can still be
described clearly in graphical form. Its disadvantages lie in that each function block takes up program
storage space and prolongs the program execution cycle.

Instruction List (IL): Its advantages lie in that it is easy to remember and master, has a corresponding
relationship with the ladder diagram (LD), is convenient for mutual conversion and program check, and
is not limited by the screen size during programming and debugging, and the input elements are not
restricted, while its disadvantage lies in that, like the ladder diagram, the program description of
complex systems is not clear enough.

Sequential Function Chart (SFC): The completed functions are represented by the main line. Its
advantages lie in that the operation process is clear and easy to understand; for large programs, the
design can be divided into different tasks and a more flexible program structure can be used to save
program design time and debugging time; and since only active steps are scanned, the program
execution time can be shortened.

Continuous Function Chart (CFC): Actually, it is another form of Function Block Diagram (FBD). The
operation order of operation blocks can be customized throughout the program, making it easy to
implement numerous large-scale process operations that are difficult to subdivide. It is widely used in
the continuous control industry.

5.2 Structured Text (ST)

5.2.1 Introduction to the Structured Text Programming Language

Structured Text (ST) is a high-level text language that can be used to describe functions, function blocks,
and program behaviors, and can also describe the behaviors of steps, actions, and transitions in Sequential
Function Charts.

Structured Text Programming Language is a high-level language, similar to Pascal, which is developed
specifically for industrial control applications and is the most commonly used language in Invtmatic Studio.

202512 (V1.1) 50

INVT Medium and Large-Scale PLC Programming Manual Programming Language

For personnel who are familiar with high-level computer language development, the structured text
language is easy to learn and use. It can implement functions such as selection, iteration, and jump
statements. In addition, the structured text language is easy to read and understand, especially when
annotated with meaningful identifiers and comments. In complex control systems, structured text can
greatly reduce the amount of code and make complex system problems simple. Its disadvantage lies in
unintuitive debugging and relatively slow compilation speed. The view of structured text is shown in Figure

5-1.
Figure 5-1 Structured Text
% 3
Pove ¢ Erc_ere |E]
O % 2
FEL Resl.Appl.PLC_PRG
PLC PRG Expression Type Walue Prepared value
G’ Project Settings ivar INT 27028
= & fbinst FE1
% in T 11
"% oot INT 11
@ fbvar INT 0
+ fhinst2 FE1
@ erg INT z2
1 ivar[e70es | := ivar[em0zs W1; (* cownmter #)
2 fbinsti{in[11 |:=11): (¢# call function block FB1, input parameter
3 ergl 22 =fhinst.out[11_]; (* read result from FBE1 output "out"
4 fbinstZ(in[2z [:=22); (% call function block FEi, input paramete
S ergl 2z |:=fhinstZ.out] 22 |; ¢* read result from FEI ocutput "out”

5.2.2 Program Execution Sequence

The execution sequence of the program using structured text is based on the "line number" from top to
bottom, as shown in Figure 5-2. At the beginning of each cycle, the program lines with smaller line numbers
are executed first.

Figure 5-2 Structured Text Program Execution Sequence

13 _-line number

T MC_Power_1{

21 Lxis:= RAxis,

2z Enable [EIEA:= IEUE,
23 kRegulatorCn ERETEL
24 bDriveStarciEIEL:=
25 Status=> ,

26 bRegulatorRealState=> ,
2 LDriveStartRealState=> ,
23 Busy=> ,

29 Error=> ,
ErrorID=>);

32 MC Jog_Ll{

33 Lxis:= RAxis,
JogForward FEE
35 JogBackward FNES:
3E Velocity[1 =1,
37 Recceleration 10 |
h. Deceleration[10 |:= 10,

Jerk:= ,

Busy=> ,

41 CommandAborted=> ,
42 Error=> ,

13 ErrorId=>);

5.2.3 Expression Execution Sequence

An expression includes operators and operands. The operands are calculated according to the rules
specified by the operators to obtain the results and return them. Operands can be variables, constants,
register addresses, functions, etc.

[Example 5.1] Expression examples.
a+b+c;
3.14*R*R;
ABS(-10)+varl;

202512 (V1.1) 51

INVT Medium and Large-Scale PLC Programming Manual

Programming Language

If there are several operators in an expression, the operators are executed in the conventional order of
precedence: operators with higher precedence are executed before those with lower precedence

sequentially. If there are operators with the same precedence in an expression, they are executed from left
torightin the order they are written. The operator precedence is shown in Table 5-1.

Table 5-1 Operator Precedence

Operator Symbol Priority
Parentheses () Highest
Function call Function name(Parameter list)

Exponentiation EXPT

Negation NOT

Multiplication *
Division /
Modulo MOD
Addition +
Subtraction -
Comparison <, >, <=, >=
Equal =
Not equal <>
And AND
Exclusive or XOR
Or OR Lowest

There are five main types of structured text statements, namely assignment statements, function and

5.2.4 Instruction Statement

function block control statements, selection statements, iteration (loop) statements, and jump statements.
Table 5-2 lists all the statements used in structured text.

Table 5-2 Structured Text Statements

Instruction Type

Instruction Statement

Example

Assignment statement

bFan:=TRUE;

Function and function Function
block control block/function call |-
statement name ();
IF IF<Boolean expression>THEN
<statement content>;END_IF
CASE<condition variable>OF
< > < >
Selection statement value 1>:<statement content 1>;
CASE
<value n>:<statement content n>;ELSE
<ELSE statement content>;
END_CASE;
FOR<variable>:=<initial value>TO<target
FOR value>{BY<step length>}DO
<statement content>
END_FOR;
. WHILE<Boolean expression>
| WHILE
teration statement <statement content>;END_WHILE;

REPEAT
< >

REPEAT statement content>UNTIL

<Boolean expression>
END_REPEAT;

202512 (V1.1)

52

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Instruction Type |Instruction Statement Example

EXIT EXIT;

CONTINUE CONTINUE;

Jump statement <identifier>:

JMP

JMP<identifier>;

Return statement RETURN RETURN;
NULL statement ; -

1. Assignment statement

The assignment statement is one of the most commonly used statements in structured text. Its function is to
assign the value generated by the expression on its right side to the operand (variable or address) on the left
side. Itis represented by ":=".

The specific format is as follows:
<variable>:=<expression>;
[Example 5.2] Assign values to two Boolean variables: bFan is set to TRUE and bHeater is set to FALSE.
VAR
bFan: BOOL; bHeater:BOOL;
END_VAR
bFan:=TRUE;
bHeater:=FALSE;
The above functions are achieved by using the ":=" assignment statement.

#'Note: The matching of data types. If the data types on both sides of the assignment operator are different,
the data type conversion function should be called. For example, rVarl is of Real type, and iVarl is of Int type.
When iVarl is assigned to rVarl, the conversion function INT_TO_REAL should be called.

The statement format is as follows.
rVarl:=INT_TO_REAL(iVarl);

There can be multiple statements in one line, for example, arrData[1]:=3;arrData[2]:=12; these two
instructions can be written in one line.

[Example 5.3] There can be multiple data in one line.
arrDatal[i]:=iDatalnLinel; arrData2[j]:=iDatalnLine2;

When a function is called, the function return value is assigned as the value of the expression, which should
be the most recently evaluated result.

[Example 5.4] The return value of the function call is used as the value of the expression.
Str1:=INSERT(IN1:='CoDe',IN2:='Sys' P:=2);

2. Function and function block control statement

A. Function control statement

The function block control statement is used to call a function. After the function is called, the return value is
directly assigned to the variable as the value of the expression. For example, in the statement
rVarl:=SIN(rDatal);, the sine function SIN is called and the return value is assigned to the variable rVarl. The
statement format is as follows.

Variable:=function name (parameter list);
[Example 5.5] Example of a function control statement.

rResult:=ADD(rDatal,rData2);// Use the ADD function to assign the result of rDatal plus rData2 to the
variable rResult.

202512 (V1.1) 53

INVT Medium and Large-Scale PLC Programming Manual Programming Language

B. Function block control statement

Function block control statements are used for function blocks. Function block calls are implemented by
instantiating function block names. For example, Timer is the instance name of the TON function block. The
specific format is as follows.

Function block instance name: (function block parameter);

If you need to call a function block in the ST programming language, you can directly enter the instance
name of the function block and assign values or variables separated with commas to each parameter of the
function block in the subsequent brackets. The function block call ends with a semicolon.

For example, call the TON timer function block in the ST programming language. Assuming its instance
name is TON1, the specificimplementation is shown in Figure 5-3.

Figure 5-3 Function Block Call in Structured Text

@fi Tracel = PLC_PRG Init_active
1 PROGRAM FOU_1
- 2 VAR
3 TON1: TOM;
d END VAR
4 I
.
1 TON1 (IN:= , PT:= , Q=> , ET=>

=]

A selection statement selects an expression based on specified conditions to determine which statement it
consists of to be executed. It can be broadly divided into two categories: IF and CASE.
3. Selection statement
1 IFstatement
The IF statement is used to implement a single-branch selection structure. Its basic format is as follows.
IF<Boolean expression>THEN
<statement content>;
END_IF

If the above format is used, the statement content will be executed only when <Boolean expression> is TRUE;
otherwise, the <statement content> of the IF statement will not be executed. The statement content can be

a single statement or a null statement, or multiple statements can be listed in parallel. The statement
expression execution process is shown in Figure 5-4.

Figure 5-4 Execution Process of Simple IF Statement

Boolean
expression

FALSE

Statement
content

202512 (V1.1) 54

INVT Medium and Large-Scale PLC Programming Manual Programming Language

[Example 5.6] Use the PLC to determine whether the current temperature exceeds 60°C. If so, always turn on
the fan for heat dissipation. The detailed implementation code is as follows.

VAR
nTemp:BYTE; (*Current temperature state signal*)
bFan:BOOL; (*Fan switch control signal*)
END_VAR
nTemp:=80;
IF nTemp>60 THEN bFan:=TRUE;
END_IF

2 IF---ELSE statement
Use the IF...ELSE statement to implement the double-branch selection mechanism. Its basic format is as
follows:

IF <Boolean expression> THEN
<statement content 1>;

ELSE

<statement content 2>;
END_IF

As shown in the above expression, the value in <Boolean expression> is first determined: If it is TRUE,
<statement content 1> is executed; if it is FALSE, <statement content 2> is executed. The program execution
process is shown in Figure 5-5.

Figure 5-5 Execution Process of IF ELSE Statement

v

Boolean
expression

Statement
content 2

Statement
content 1

v

[Example 5.7] Use the PLC to determine that when the temperature is less than 20°C, turn on the heating
device; otherwise (temperature = 20°C), disconnect the heating device.
IF n”Temp<20 THEN
bHeating:=TRUE;
ELSE
bHeating:=FALSE;
END_IF
VAR
nTemp:BYTE; (*Current temperature state signal*)
bHeating:BOOL; (*Heater switch control signal*)
END_VAR
When there is more than one conditional expression in the program, a nested IF...ELSE statement is required,
that is, a multi-branch selection structure. Its basic format is as follows.
IF<Boolean expression1>THEN
202512 (V1.1) 55

INVT Medium and Large-Scale PLC Programming Manual Programming Language

IF<Boolean expression2>THEN

<statement contentl>;

ELSE
<statement content2>;
END_IF
ELSE
<statement content3>;
END_IF

As shown above, another IF...ELSE statement is placed in IF...ELSE to achieve nesting. The following example
illustrates the use of nesting.

The above expression first determines the value in <Boolean expression 1>: If it is TRUE, it continues to
determine the value of <Boolean expression 2>; if it is FALSE, it executes <statement content 3> and returns
to <Boolean expression 2> for determination. If <Boolean expression 2> is TRUE, it executes <statement
content 1>; otherwise, it executes <statement content 2>

[Example 5.8] When the device enters the automatic mode, if the actual temperature is > 50°C, the fan will
be turned on and the heater will be turned off. When the temperature is < 50°C, the fan will be turned off
and the heater will be turned on. In manual mode, the heater and fan will not work.

VAR
bAutoMode: BOOL; (*Manual/automatic mode state signal*)
nTemp:BYTE; (*Current temperature state signal*)
bFan:BOOL; (*Fan switch control signal*)
bHeating:BOOL; (*Heater switch control signal*)

END_VAR

IF bAutoMode=TRUE THEN IF

nTemp>50 THEN

bFan:=TRUE;
bHeating:=FALSE;

ELSE
bFan:= FALSE;
bHeating:= TRUE;

END_IF

ELSE
bFan:= FALSE;
bHeating:=FALSE;

END_IF

3 IF---ELSIF---ELSE statement

In addition, the multi-branch selection structure can also be presented in the following forms. Its specific
formatis as follows:

IF <Boolean expression 1> THEN
<statement content 1>;

ELSIF <Boolean expression 2> THEN
<statement content 2>;

ELSIF <Boolean expression 3> THEN

<statement content 3>;

202512 (V1.1) 56

INVT Medium and Large-Scale PLC Programming Manual Programming Language

ELSE
<statement content n>;
END_IF
If the expression <Boolean expression 1> is TRUE, only the instruction <statement content 1> is executed,
and no other instructions are executed. Otherwise, determination is started from the expression <Boolean
expression 2> until one of the Boolean expressions is TRUE, and then the statement content corresponding

to this Boolean expression is executed. If the value of the Boolean expression is not TRUE, only the
instruction <statement content n> is executed. The program execution process is shown in Figure 5-6.

Figure 5-6 Execution Process of IF...ELSIF...ELSE Statement

Boolean FALSE

expression 1 }

Boolean
expression 2

FALSE

TRUE

Boolean

TRUE expression 3

TRUE

Statement
content 3

Y A4 \
Statement Statement Statement
content 1 content 2 content n

4 CASE statement
A CASE statement is a multi-branch selection statement that enables the program to select a branch from
multiple branches for execution based on the value of an expression. Its basic format is as follows.
CASE<condition variable>OF
<value 1>:<statement content 1>;
<value 2>:<statement content 2>;
<value 3,value 4,value 5>:<statement content3>;

<value6..valuel0>:<statement content4>;

<valuen>:<statement contentn>;
ELSE
<ELSEstatement content>;
END_CASE;
The CASE statement is executed in the following mode:
® |fthevalue of the <condition variable> is <value i>, then the instruction <statement content i> is
executed.
® |fthe <condition variable> does not have any specified value, the instruction <ELSE statement content>
is executed.

® |fseveral values of the condition variable require the same instruction to be executed, the values can
be written one after the other, separated by commas. In this way, the common instruction is executed,
as shown in the fourth line of the above program.

202512 (V1.1) 57

INVT Medium and Large-Scale PLC Programming Manual Programming Language

® |fthe condition variable needs to execute the same instruction within a certain range, you can write the
initial and final values, separated by two dots. In this way, the common instruction is executed, as
shown in the fifth line of the above program.

[Example 5.9] When the current state is 1 or 5, the device 1 is running and the device 3 is stopped; when the
state is 2, the device 2 is stopped and the device 3 is running; if the current state is between 10 and 20, both
devices 1 and 3 are running. In other cases, devices 1, 2, and 3 are required to stop. The specific
implementation code is as follows:

VAR
nDevicel,nDevice2,nDevice3:BOO0L; (*Device 1..3 switch control signal*)
nState:BYTE; (*Current state signal®)
END_VAR
CASE nState OF 1,
5:
nDevicel:=TRUE;
nDevice3:=FALSE;
2:

nDevice2:=FALSE;
nDevice 3:=TRUE;
10..20:
nDevicel:=TRUE;
nDevice 3:=TRUE;
ELSE
nDevicel:=FALSE;
nDevice2:=FALSE;
nDevice3:=FALSE;
END_CASE;
The CASE statement execution process is shown in Figure 5-7. When nState is 1 or 5, the device 1 is on and

the device 3 is off; when nState is 2, the device 2 is off and the device 3 is on; when nState is 10-20, the device
1is off and the device 3 is on; in other cases, devices 1, 2, and 3 are all off.

Figure 5-7 Execution Process of CASE Statement

nState
Others
10720
Device 1 on Device 2 off Device 1 on Device 1 off
Device 3 off Device 3 on Device 3 on Device 2 off

Device 3 off

4. Iteration statement

Iteration statements are mainly used for repeatedly executing programs. In Invtmatic Studio, common
iterative statements include FOR, REPEAT, and WHILE statements, which are explained in detail below.

202512 (V1.1) 58

INVT Medium and Large-Scale PLC Programming Manual Programming Language

A. FORloop

The FOR loop statement is used to calculate an initialization sequence. When a certain condition is TRUE,
the nested statements are repeatedly executed and an iterative expression sequence is calculated. If it is
FALSE, the loop is terminated. Its specific format is as follows.

FOR<variable>:=<initial value>TO<target value>{BY<step size>}DO
<statement content>

END_FOR;
The execution sequence of the FOR loop is as follows:
® Calculate whether the <variable> is within the range of the <initial value> and the <target value>.
® When the <variable> is less than the <target value>, the <statement content> is executed.
® When the <variable> is greater than the <target value>, the <statement content> is not executed.
°

Each time the <statement content> is executed, the value of the <variable> is always increased by the
specified step size. The step size can be any integer value. If the step size is not specified, it defaults to 1.
When the <variable> is greater than the <target value>, exit the loop.

In a sense, the principle of the FOR loop is like a copier. The number of copies to be made is preset on the
copier, which is the condition of the loop. When the condition is met, that is, the actual number of copies is
equal to the set number of copies, copying stops.

The FOR loop is the most commonly used loop statement. It embodies a function of repeating a specified
number of times, but due to different code writing methods, other loop functions can also be implemented.
The following example demonstrates how to use the FOR loop.

[Example 5.10] Use the FOR loop to calculate 2 to the 5th power.

VAR
Counter:BYTE; (*Loop counter)
Varl:WORD; (*Output result*)
END_VAR

FOR Counter:=1 TO5BY 1DO
Varl:=Varl*2;
END_FOR;
Assuming that the initial value of Varl is 1, the value of Varl is 32 after the loop ends.
Note: If the <target value> is equal to the limit value of the <variable>, an infinite loop will be entered.
Assume that the type of the counting variable Counter in [Example 5.10] is SINT (-128 to 127). When the

<target value> is set to 127, the controller will enter an infinite loop. Therefore, a limit value cannot be set
for the <target value>.

B. WHILE loop
The WHILE loop is used in a similar way to the FOR loop. The difference between the two is that the end
condition of the WHILE loop can be any logical expression. That is, you can specify a condition, and when
the condition is met, the loop is executed. Its specific format is as follows.

WHILE <Boolean expression>

<statement content>;

END_WHILE;
The execution sequence of the WHILE loop is as follows:
® (Calculate the return value of the <Boolean expression>.
® When the value of the <Boolean expression>is TRUE, the <statement content> is executed repeatedly.

® When the initial value of the <Boolean expression> is FALSE, the instruction <statement content> is not
executed and jumps to the end of the WHILE statement. The execution process is shown in Figure 5-8.

202512 (V1.1) 59

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-8 Execution Process of WHILE Statement

@ FALSE

TRUE

Statemen
t

L]

—

The WHILE statement is like controlling a motor in a project: when the "Start" button is pressed (when the
Boolean expression is TRUE), the motor keeps rotating; when the "Stop" button is pressed (when the
Boolean expression is FALSE), the motor stops immediately. The following example demonstrates how to
use the WHILE loop.

Note: If the value of the <Boolean expression> is always TRUE, an infinite loop will be entered, which
should be avoided. The generation of an infinite loop can be avoided by changing the condition of the loop
instruction. For example: Use an incrementing and decrementing counter to avoid an infinite loop.

[Example 5.11] As long as the counter is not zero, the program inside the loop body is always executed.

VAR
Counter: BYTE; (*Counter™)
Varl:WORD;

END_VAR

WHILE Counter<>0 DO
Varl :=Varl*2;
Counter := Counter-1;

END_WHILE

In a sense, the WHILE loop is more powerful than the FOR loop because the WHILE loop does not need to
know the number of loops before executing the loop. Therefore, in some cases, it is sufficient to use only
these two loops. However, if the number of loops is known, the FOR loop is better because it avoids infinite
loops.

C. REPEAT loop

A REPEAT loop differs from a WHILE loop because it checks the end condition only after the instruction is
executed. This means that the loop will be executed at least once, regardless of the end condition.

Its specific format is as follows.
REPEAT
<statement content>
UNTIL
<Boolean expression>
END_REPEAT;
The execution sequence of the REPEAT loop is as follows:
® When the value of the <Boolean expression> is FALSE, the <statement content> is executed.
® When the value of the <Boolean expression>is TRUE, the execution of the <statement content> stops.

® After the first execution of the <statement content>, if the value of the <Boolean expression>is TRUE,

202512 (V1.1) 60

INVT Medium and Large-Scale PLC Programming Manual Programming Language

the <statement content> is executed only once.

Note: If the value of the <Boolean expression> is always TRUE, an infinite loop will be entered, which
should be avoided. The generation of an infinite loop can be avoided by changing the condition of the loop
instruction. For example: Use an incrementing and decrementing counter to avoid an infinite loop.

The following example demonstrates how to use the REPEAT loop.
[Example 5.12] Example of a REPEAT loop. The REPEAT loop stops when the counter reaches 0.
VAR
Counter: BYTE;
END_VAR

REPEAT

Counter := Counter+1;
UNTIL

Counter=0
END_REPEAT

The result of this example is that each program cycle enters the REPEAT loop, and the Counter is BYTE (0-
255), that is, 256 auto-increment operations are performed in each cycle.

As mentioned above, "This means that the loop will be executed at least once, regardless of the end
condition", so every time the REPEAT statement is entered, the Counter is first 1, and the
Counter:=Counter+1 instruction is executed 256 times in each cycle until the Counter variable is
accumulated to overflow to 0, and then the loop is exited. It is incremented until it overflows, and so on.

5. Jump statement

A. EXIT statement

If the EXIT instruction is used in the FOR, WHILE, and REPEAT loops, the inner loop stops immediately
regardless of the end condition. Its specific format is as follows.
EXIT;
[Example 5.13] Use the EXIT instruction to avoid division by zero when an iterative statement is used.
FOR Counter:=1 TO5BY 1 DO INT1:=INT1/2;
IFINT1=0 THEN
EXIT; (*Avoid division by zero*)
END_IF
Varl:=Varl/INT1;
END_FOR
When INT1 is equal to 0, the FOR loop ends.
B. CONTINUE Statement

This instruction is an extended instruction of the IEC 61131-3 standard. The CONTINUE instruction can be
used in three loops: FOR, WHILE, and REPEAT.

The CONTINUE statement interrupts the current loop, ignoring the code following it and starting a new loop
directly. When multiple loops are nested, the CONTINUE statement can only cause the loop statement that
directly contains it to start a new loop. Its specific format is as follows.

CONTINUE;
[Example 5.14] Use the CONTINUE instruction to avoid division by zero when an iterative statement is used.

VAR

202512 (V1.1) 61

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Counter: BYTE; (*Loop counter™)
INT1,Varl: INT; (*Intermediate variable*)
Erg: INT; (*Output result*)
END_VAR
FOR Counter:=1 TO5BY 1DO
INTL:= INT1/2;
IFINT1=0 THEN
CONTINUE; (*Avoid division by zero*)
END_IF
Varl:=Varl/INT1; (*Executed only when INT1 is not equal to 0%)
END_FOR;
Erg:=Varl,

C. JMP statement
A jump statement can be used to unconditionally jump to the code line marked with a jump identifier. Its
specific format is as follows.

<identifier>:

JMP <identifier>;

The <identifier> can be any identifier and is placed at the beginning of a program line. The JMP instruction is
followed by the jump destination, which is a predefined identifier. When the JMP instruction is executed, it
will jump to the program line corresponding to the identifier.

Note: It is necessary to avoid creating an infinite loop, and you can use the IF condition to control the
jump instruction.
[Example 5.15] Use the JMP statement to loop the counter in the range of 0..10.
VAR
nCounter: BYTE;
END_VAR
Labell:nCounter:=0;
Label2:nCounter:=nCounter+1;
IF nCounter<10 THEN
JMP Label2;
ELSE
JMP Labell;
END_IF
Labell and Label2 in the above example are labels rather than variables, so variable declaration is not
required in the program.

Use the IF statement to determine whether the counter is within the range of 0-10. If it is within the range,
the statement JMPLabel2 is executed, and the program will jump to Label2 in the next cycle and execute the
program nCounter:=nCounter+1 to increase the counter by 1. Otherwise, it will jump to Labell and execute
nCounter:=0 to clear the counter.

The function in this example can also be implemented using a FOR, WHILE, or REPEAT loop. In general, you
should avoid using the JMP instruction because it will reduce the readability and reliability of your code.

6. RETURN instruction

The RETURN instruction is used to exit a program organization unit (POU). Its specific format is as follows.

202512 (V1.1) 62

INVT Medium and Large-Scale PLC Programming Manual

Programming Language

RETURN;

[Example 5.16] Use the IF statement for determination. When the condition is met, end the execution of this
program immediately.

VAR
nCounter: BYTE;
bSwitch: BOOL,
END_VAR
IF bSwitch=TRUE THEN
RETURN;
END_IF;

nCounter:= nCounter +1;

(*switching signal®)

When bSwitch is FALSE, nCounter is always auto-incremented by 1. When bSwitch is TRUE, nCounter keeps
the value of the previous cycle and exits the program organization unit (POU) immediately.

7. NULL statement
A null statement means that nothing is executed.

The specific format is as follows.

8. Annotation

Annotation is a very important part of a program, which makes the program more readable without
affecting its execution. You can add an annotation anywhere in the declaration or execution section of the
ST editor. In the ST language, there are two ways of annotation.

1. A multi-line annotation starts with (* and ends with *). This annotation method allows multi-line
annotations, as shown in Figure 5-9.

2. Asingle-line annotation starts with "//" and continues to the end of the line, as shown in Figure 5-10.

Figure 5-9 Structured Text Language
Annotation (Multi-line Annotation)

Figure 5-10 Structured Text Language Annotation
(Single-line Annotation)

L oy - = = 17
d mesture handlipo:
F, nandliin

gESLLUYS

A / only when mouseup ¥as done
ZE IF xBight AND bkDragCanStart = FALSE THEN
Fa : xRight := FLLSE;
re:=FALSE IF iMainArealndex < MRA¥ MODULES-1 THEN
*) iMainhkrealndex := iMainirealndex + 1:
IF iMainAreaIndex = 0 THEN bIndexChanged := TRUE;
biperationfctive:=IRUE; END TF
ELSIF iMainfrealndex = 1 THEH
bOrderfctive:=IEIE;

5.2.5 Application Examples

[Example 5.17] Hysteresis function block FB_Hystersis.

1. Control requirements

This function block has three input signals, namely the current real-time value input signal, the comparison
setting value input signal, and the deviation value input signal. In addition, an output value is required.

When the output is TRUE, it switches to FALSE only when the input signal IN1 is less than VAL-HYS. When the
output signal is FALSE, the output switches to TRUE only when the input signal IN1 is greater than VAL+HYS.

202512 (V1.1) 63

INVT Medium and Large-Scale PLC Programming Manual Programming Language

The input/output variables of the function block FB_Hystersis are defined as follows.
FUNCTION_BLOCK FB_Hysteresis

VAR_INPUT
IN1:REAL; // Input signal
VAL:REAL; // Comparison signal
HYS:REAL; // Hysteresis deviation signal
END_VAR
VAR_OUTPUT
Q:BOOL;
END_VAR
Figure 5-11 Hysteresis Process Figure 5-12 Function Block Diagram
Q
1 FE_Hysteresis1
HYS | HYS, FB_Hysteresis
« N —IN1
- L vaL
—HYS
VAL

2. Function block programming

The program used by the function block body to judge the input signal is as follows.

IF Q THEN
IF IN1<(VAL-HYS) THEN
Q:=FALSE; // IN1 decreases
END_IF
ELSIF IN1>(VAL+HYS) THEN
Q:=TRUE; // IN1 increases
END_IF

3. Function block application

The FB_Hysteresis function block can be used for bit signal control, where IN1 is connected to the process
variable rActuallyValue, VAL is linked to the process setting value rSetValue, and rTolerance is the required
control deviation. The program declaration is as follows.

PROGRAM POU

VAR
fbHysteresis:FB_Hysteresis; // fbHysteresis is an instance of the FB_Hysteresis function block
rActuallyValue:REAL; // Actual measurement value
rSetValue:REAL; // Process setting value
rTolerance:REAL; // Deviation setting value
bOutput AT%QX0.0:BOOL; //Bit signal output
END_VAR

The program body is as follows:
fbHysteresis(IN1:=rActuallyValue , VAL:=rSetValue , HYS:=rTolerance , Q=>bOutput);
The above program can also be expressed by the following program, and the result is the same.

fbHysteresis(IN1:=rActuallyValue , VAL:=rSetValue , HYS:=rTolerance); bOutput:=fbHysteresis.Q;

202512 (V1.1) 64

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-13 Program Execution Results of Hysteresis Function Block

.........

NENEN
Ik

S O -

{ W—— Fo—

e I Do e e ey o
2 » i

Figure 5-13 shows the results of actual program execution. In the program, rSetValue is set to 100 and
rTolerance is set to 20. When the value of rActuallyValue increases from 0 to 120, the bOutput signal is set to
TRUE. Then, when rActuallyValue drops to 0, bOutput also becomes FALSE. In theory, when it drops to 80,
bOutput will become FALSE.

[Example 5.18] Time delay function block FB_Delay.

The function block FB_Delay is a time delay function block, which is different from the hysteresis function
block FB_Hystersis. The time that the output signal lags behind the input signal is called time delay. The
controlled objects in the production process are often described by a first-order filter plus a time delay. Here
we only introduce the time delay function block, and will not go into detail about the first-order filter.

The transfer function of time delay is as follows:

Y(s)="""X(s)
Assuming the sampling cycle is Ts, after discretization, we get:

Y(k)=X(k-N)
Where X is the input signal of time delay; Y is the output signal of time delay. Assuming that the sampling
cycle used for discretization is Ts, the ratio of the time delay T to the sampling cycle Ts is the lag number N.
® Variable declaration of the function block FB_Delay

The program uses an array to store input signals, and the array stores sampling data at different times, that
is, the first cell stores the sampling value at the time 1 X Ts, and the i-th cell stores the sampling value at the
time i X Ts. The integer value of the ratio of the time delay t to the sampling cycle Tsis N (represented by N
after the decimal part of N is removed). Therefore, if the input signal is stored in the Nth cell at a certain
moment, the output signal after the time delay should be output from the first memory cell.

FUNCTION_BLOCK FB_Delay

VAR_INPUT
IN:REAL; // Input signal
bAuto: BOOL; // Automatic/manual flag signal
tCycleTime:TIME; // Sampling cycle
tDelayTime:TIME; // Time delay
END_VAR
VAR_OUTPUT
rOutValue:REAL,; // Output after time delay processing

202512 (V1.1) 65

INVT Medium and Large-Scale PLC Programming Manual Programming Language

END_VAR

VAR
N:INT; // Lag number
arrValue:ARRAY[0..2047] OF REAL; // First-in-first-out array stack
i:INT; // Array subscript, used for input
jiINT; // Array subscript, used for output
fbTrig:R_TRIG; // Convert the automatic signal into a pulse
fbTon:TON;

END_VAR

After filling in the above input and output parameters, call the function block diagram through the graphical

programming language. The schematic effect diagram is shown in Figure 5-14.

Figure 5-14 FB_Delay Function Block Diagram
FE_Delay_0
FB_Delay

IM rOutValue

—béuto

tCycleTime

tDelay Time

® Program body of the Function block FB_Delay
N:=TIME_TO_INT(tDelayTime)/TIME_TO_INT(tCycleTime);
fbTrig(CLK:= bAuto);
IF foTrig.Q THEN
i:=N;
J:=0;
END_IF
fbTon(IN:= NOT fbTon.Q, PT:=tCycleTime);
IF foTon.Q AND bAuto THEN
i:==(i+1)MOD 2000;
arrValueli]:=i;
j:=(j+1)MOD 2000;
rOutValue:=arrValue[j];
END_IF

The function block body uses two subscript windows to manage the access and output of input and output
signals. The input signal data is stored at the i-th subscript address of the array X, and the initial value is
equal to the lag number. The output signal is at the j-subscript address of the array X, and the initial output
value is equal to 0. The modulo method is used to determine the storage and output address each time, and
after each operation, the original address is increased by 1. It is ensured that the next time the operation is
executed, the input of this time and the input signals of the previous N times are stored as the output of this
time.

The number of array memory cells determines the size of the time delay and is related to the sampling cycle.
The larger the time delay is and the smaller the sampling cycle is, the more memory cells are required.
Generally, the lag number N can be made larger than the total number of memory cells according to the size
of the application.

In this example, the lag number N is required to be less than 2000 (the array length is 2048). In addition, the
array memory cell starts from 0, and the actual application starts from the address 0. Figure 5-15 shows the
relationship between the input and output windows.

202512 (V1.1) 66

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-15 Relationship between Input and Output Windows
1999...th storage

J 2000...th storage
1st, 2001...th storage

l i kth, k+2001...th storage

xol TTJLI TP EINGP LT T] T (1999
-] I :
v 1st,2001...th okL}thr;ukt+20m -t storage 1999...th output

2001...th output

Notes on using the function block FB_Delay:

® Thelagnumber N is related to the time delay and the sampling cycle. The signal of switching from the
running state to the auto state is used as the pulse signal for setting the initial value in the program.

® This function block can be combined with the first-order filter link to simulate the actual production
process and conduct control system simulation research.
[Example 5.19] Calculate maximum, minimum, and average values.

In some industrial controls, it is often necessary to calculate the average, maximum, and minimum values of
several measured values. The following uses the structured text programming language to implement such
an application.

1. Control requirements

It is required to measure the temperatures of 32 points in a kiln. The maximum, minimum, and average
temperature values of these 32 points need to be calculated.

2. Programming

The maximum, minimum, accumulated total, and average values are defined in the program respectively.
The specific variable definitions are as follows.

PROGRAM PLC_PRG VAR
rMaxValue:REAL; //Maximum
rMinValue:REAL; // Minimum
rSumValue:LREAL; // Accumulated total
rAvgValue:REAL; //Average
arrinputBuffer AT%IW100 :ARRAY[1..32] OF REAL; // Input source data
i:INT;
END_VAR
The program body is as follows, using the FOR...DO statement to scan all input channels, calculate the
average, maximum, and minimum values, and also calculate the total value.
rSumValue:=0;
FORi:=1TO32BY1DO
rSumValue:=REAL_TO_LREAL (arrinputBuffer[i])+rSumValue;
IF arrInputBuffer[i]> rMaxValue THEN
rMaxValue:=arrinputBuffer(i];
END_IF
IF arrInputBuffer[i]< rMinValue THEN
rMinValue:=arrinputBuffer[il;
END_IF
END_FOR;
rAvgValue:=rSumValue/32;

202512 (V1.1) 67

INVT Medium and Large-Scale PLC Programming Manual Programming Language

5.3 Ladder Diagram (LD) and Function Block (FBD)

5.3.1 Introduction to Ladder Diagram and Function Block Diagram Programming
Languages

Two graphical programming languages are defined in the IEC 61131-3 standard: namely Ladder Diagram (LD)
and Function Block Diagram (FBD). The LD programming language uses a series of rungs to form a ladder
diagram to represent the relationship between variables in the industrial control logic system. The FBD
programming language uses a series of function blocks to represent the main body of a program

organization unit.

® | adder Diagram (LD)

The ladder diagram originated in the United States and was originally based on a graphical representation
of relay logic for programming programmable logic controllers (PLCs). It is one of the most widely used
graphical programming languages for PLC programming.

The basic structure of a ladder diagram is as follows:

1. Power rail: The left power rail is nominally the start point of power flow; while the right power rail is the
end point of power flow. The power flows from left to right along the horizontal rungs, providing power
through various contacts, functions, function blocks, coils, etc.

2. Contact and coil: A contact represents the state of a Boolean variable (such as the state of a switch);
while a coil represents the state of an actual device (such as the startup state of a motor). Each contact
and coil corresponds to a memory cell in the PLC memory.

3. Function and function block: It corresponds to the functions or function blocks in the standard library
of IEC1131-3 or defined by users.

Ladder Diagram logic solution: According to the state and logical relationship of each contact in the ladder
diagram, the state of the programming element corresponding to each coil in the diagram is found. This
process is called the logic solution of the ladder diagram.

Soft relay: In the ladder diagram, some programming elements use the names of traditional relays, such as
coils and contacts, but they are actually memory cells (soft relays). Each soft relay corresponds to a memory
cell of the image register in the PLC memory.

TRUE/ON state: If the memory cellis "TRUE", the coil of the corresponding soft relay is "energized", the
normally open contact is engaged, and the normally closed contact is disengaged.

FALSE/OFF state: If the memory cell is "FALSE", the state of the coil and contact of the corresponding soft
relay is opposite to the above.

® Function Block Diagram (FBD)

Function block diagrams are used to describe functions, function blocks, and program behaviors, and can
also describe the behaviors of steps, actions, and transitions in Sequential Function Charts. A function block
diagram is very similar to a signal flow diagram in an electrical diagram. In a program, it can be seen as the
flow of information between two process elements. Function block diagrams are widely used in the field of
process control.

Function blocks are represented by rectangular blocks. Each function block has at least one input terminal
on the left side and at least one output terminal on the right side. The type name of a function block is
usually written inside the block, but the instance name of a function block is usually written at the top of the
block. The input and output names of a function block are written in the corresponding places of the input
and output points in the block.

202512 (V1.1) 68

INVT Medium and Large-Scale PLC Programming Manual Programming Language

5.3.2 Program Execution Sequence

The execution sequences of ladder diagram and function block diagram are similar, both executed from left
to right and from top to bottom, as shown in Figure 5-16.

Figure 5-16 Program Execution Sequence

3
| bInpurl pInput2) bOutputl
Rung 0 Execution process
[1}]
bCutputa Branch
<l
| e
bInput3 bInputd blutputd
I
—Llk L]
3 CIU_0
bEnable CTH bWorking
T o
) EN B = {0
bCounter XU T 2 = bDecne
bReset m—?.ifif CV —nCurrentValue
999 —EV

Bus: The ladder diagram uses a network structure which is bounded by the left bus. When analyzing the
logical relationship of the ladder diagram, in order to learn from the analysis method of the relay circuit
diagram, we can imagine that there is a DC power supply voltage between the left and right bus (left bus and
right bus), positive on the left and negative on the right, and there is an "energy flow" from left to right
between the bus. The right bus is not displayed.

Rung: Itis the smallest unit in the ladder diagram network structure. A logic-related network starting from
the input condition to a coil is called a rung. In the editor, rungs are arranged vertically. In Invtmatic Studio,
each rung is represented by a label on the left, contains input and output instructions, and is composed of
logical or arithmetic expressions, programs, and jump, return, or function block call instructions. To insert a
rung, you can use the insert instruction or drag it from the Toolbox. Elements contained in a rung can be
copied or moved by dragging and dropping them in the editor. When the ladder diagram is executed, it
starts from the rung with the smallest label, determines the state of each element from left to right and the
states of the link elements on the right, and executes one by one to the right. The execution results are
output by the execution control element. Then it proceeds to the next rung. Figure 5-16 shows the execution
process of a ladder diagram.

Energy flow: The bold blue line on the left side of Figure 5-16 is the energy flow, which can be understood
as an imaginary "conceptual current" or "power flow" flowing from left to right. This direction is consistent
with the order of logical operations when the user program is executed. Energy flow can only flow from left
to right. Using the concept of energy flow can help us better understand and analyze ladder diagrams.

Branch: When a branch appears in a ladder diagram, the state of each graphical element is analyzed in the
same order from top to bottom and from left to right. The states of the link elements on the right side of the
vertical link elements are determined according to the above-mentioned relevant regulations, so as to
execute the evaluation process one by one from left to right and from top to bottom. In ladder diagrams,
evaluation without feedback paths is not very clear. All external input values associated with these contacts
must be evaluated before each rung.

5.3.3 Execution Control

Jump and Return

When the jump condition is met, the program jumps to the rung marked with Label and starts execution
until this part of the program runs to RETURN, then returns to the original rung and continues execution. Its
structure diagram is shown in Figure 5-17.

202512 (V1.1) 69

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-17 Jump Instruction Execution Process

Labell

h 4

, Labell

oo |

When the program is executed to Labell on the left side of Figure 5-17, the program starts to execute the
jump and jumps directly to the right side of Figure 5-17 to find the program segment marked with Labell,
and then starts executing the following program until the program runs to RETURN. At this time, the jump
program is completed and returns to the main program loop on the left side of the figure.

The jump and return instructions using ladder diagrams in Invtmatic Studio are shown in Figure 5-18.
[Example 5.20] Example of program execution using a jump instruction.

Figure 5-18 Execution of a Jump Instruction

bInputl
Il Prabell

5]

bInput3 blutputi

Ll il

Lakell:

bEnable CTU
s |
—[———= @ =o {FETURN p
bCounter IEMGH U ' o
bEesget m—ii SET CV—nCurrentValue

999 —EV

As shown in Figure 5-18, when binputl is set to TRUE, the main program executes the jump statement.
According to Labell, the program jumps to the Labell program segment in Rung 3. It is not difficult to see
from Figure 5-18 that although binput3in Rung 2 is set to ON, bOutput2 will never be set to TRUE because
the program directly skips the statement. bOutput2 will be TRUE only if binputl is FALSE and binput3 is
TRUE.

5.3.4 Link Element

The ladder diagram language in IEC1131-3 reasonably absorbs and draws lessons from the ladder diagram
languages of various PLC manufacturers, and uses the basically consistent graphic symbols with those of
various PLC manufacturers. The view of the ladder diagram editor is shown in Figure 5-19. The main graphic
symbols in IEC 61131-3 include the following.

® Basic connection: power rails, link elements

® Contacts: normally open contacts, normally closed contacts, positive transition-sensing contacts,
negative transition-sensing contacts

® Coils: general coils, negated coils, set (latch) coils, reset (unlatch) coils, holding coils, set holding coils,
reset holding coils, positive transition-sensing coils, negative transition-sensing coils

® Functions and function blocks: standard functions and function blocks as well as user-defined function
blocks

202512 (V1.1) 70

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-19 Ladder Diagram Editor

) Label: 1 Label ElLllancljlunIfunctlnn

bStartButton bEmg_Stop
| |]
|| -}

bHeorking

bWorking

1M}

=]

5.3.4.1 Line Element

1. Power rail (bus)

The graphic element of a power rail in a ladder diagram is also called bus. Its graphic representation is
located on the left side of the ladder diagram, and it can also be called the left power bus. The left bus graph
is shown in Figure 5-20.

Figure 5-20 Left Bus

b3tart ADD

I] [I + I

10—

Left bus

2. Connectingline

In a ladder diagram, each graphic symbol is connected by a connecting line. The graphic symbols of
connecting lines include horizontal lines and vertical lines, which are the most basic elements of a ladder
diagram. The horizontal and vertical connecting lines are shown in Figure 5-21.

Figure 5-21 Connecting Line

a) Horizontal b) Vertical connecting
connecting line line

3. Transmission rules for link elements

The state of a link element is transmitted from left to right, realizing the flow of energy. The state
transmission follows the rules below: The state of the link element connected to the left power rail is TRUE
at any time, which indicates that the left power rail is the start point of the energy flow. The right power rail
is analogous to zero potential in an electrical diagram.

A horizontal link element shall be indicated by a horizontal line. A horizontal link element transmits the state
of the element on its immediate left to the element on its immediate right.

Avertical link element is always connected to one or more horizontal link elements, that is, the vertical link
element shall consist of a vertical line intersecting with one or more horizontal link elements on each side.
The state of the vertical link element is represented by the state or operation of each horizontal link element
on its left side.

202512 (V1.1) 71

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Therefore, the state of the vertical link shall be:
FALSE if the states of all the attached horizontal link elements to its left are FALSE;
TRUE if the state of one or more of the attached horizontal link elements to its left is TRUE.

The state of the vertical link element shall be transmitted to all of the attached horizontal link elements on
its right, but shall not be transmitted to any of the attached horizontal links on its left.

[Example 5.21] Examples of link elements and their state transmission.

Figure 5-22 Examples of Link Elements and Their States

bInputl e bInputz bInputd bCutput

11 1Nl /[)
1 ’5) ®
O

Figure 5-22 shows examples of link elements and their states. The link element 1 is connected to the left
power rail in a TRUE state. The link element 2 is connected to the link element 1 and its state is transmitted

from the link element 1, so its state is TRUE. The link element 3 is a vertical link element and connected to
the horizontal link element 1 in a TRUE state.

The link elements 2 and 3 transmit the states of link elements 4 and 5 respectively. Since the variables
bInput2 and binput3 corresponding to graphic elements 4 and 5 are normally open contacts, the states of
link elements 6 and 7 become FALSE after being transmitted by the graphic elements; the states of all the
link elements on the left side of the link element 8 are FALSE.

The input and output data types of a link element must be the same. In the standard, the data types of
graphic elements such as contacts and coils are not limited to the Boolean type. Therefore, the input and
output data types of a link element must be the same to ensure correct state transmission.

5.3.4.2 Rung

Rungs are the basic entities of LDs and FBDs. In the LD/FBD editor, rungs are arranged in numerical order.
Each rung starts with a label on the left and has a structure consisting of logical or arithmetic expressions,
programs, functions, and function block call, jump, or return instructions. The schematic diagram of rungs is
shown by the red shaded part in Figure 5-23. The rungs are arranged in sequence by serial number.

Figure 5-23 Rung View

Rung annotation: A rung can also be assigned a title, annotation, and label. The title and annotation areas
can be enabled or disabled via the "Options" — "FBD, LD, and IL Editor" dialog box, as shown in Figure 5-24.

202512 (V1.1) 72

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-24 Rung Title, Annotation, and Label Functions

; Options bt
CFC Editor -
& Composer
@ Debugging General FBD LD IL Print
i Dedaration Editor View Behavior
ﬂj Device description download Show network title Flaceholder for new operands
m Device editor Show network comment [[] Empty operands for function black pins
4] | FED, LD and IL editor | Show box icon
) Help Show operand comment
@ nternational Settings [] show symbol camment
il Libraries [] showsymboladdress
m Library download Show network separators
(& Load and Save
F Monitoring Font (dick onto the sample to edit) [Fixed size for operand fields:
{ PLCopenxML Edit Operand Sizes...
L‘_‘ Proxy Settings AaBbCoiYyZz
if§ Refactoring
SFC editor
L_=|¢ SmartCoding o
iy
£ >
cance

If the above option is activated, you can open an editable field for the title by clicking below the upper
border of the rung with the mouse. If you want to enter an annotation, you need to open the corresponding
editable field below the title field. Annotations can be made in multiple lines. You can start a new line by
pressing the Enter key, and terminate the input of annotation text by pressing [Ctrl]+[Enter]. Figure 5-25
shows how to add a rung title and annotation.

Figure 5-25 Rung Title and Annotation

E network title comment

network comment

TON_1
bInput TOM
01 1 o
tfls —PT ET —

Rung title: You can switch to the "Annotation State" via "Switch Rung Annotation State". Then, the rung will
be displayed for annotation and will not be executed.

Rung branch: You can create a "sub-rung" by inserting "|‘t Branch "in the toolbox, as shown in
Figure 5-26, in which the branch function is used.

Figure 5-26 Create Sub-rungs through the Branch Function

ADD Ij STB
nVarl — —
, + [

nVarid — —

SUB

202512 (V1.1) 73

INVT Medium and Large-Scale PLC Programming Manual Programming Language

5.3.4.3 Label
Alabelis an optional identifier and its address can be determined when a jump is defined. It can contain any
characters.

In the rung area, each FBD, LD, or IL rung has a text entry field to define a label. A label is an optional
identifier for a rung that can be addressed when a jump is defined, and it can contain any sequence of
characters.

Use in the FBD

If you make a right-click in a blank space in the rung area and select "Insert Label", as indicated by 1 in
Figure 5-27, Label: will pop up in 2 and you can edit it.

Figure 5-27 Add a Rung Label

k= Labelr I
ADD & Cut
nvarl — + — Copy
Paste
nVarz —
¥ Delete
4 [Insert Network
[F Insert Network (below)
1 |m Insert label
= &% Toggle network comment state

5.3.4.4 Contact

1. Contacttype

A contact is a graphic element which transmits a state to the horizontal link element on its right side in a
ladder diagram. The contact in the ladder diagram follows the contact terminology in an electrical diagram
and is used to indicate the state change of a Boolean variable.

Contacts can be divided into normally open contacts (NOs) and normally closed contacts (NCs). Normally
open contacts are disengaged under normal operating conditions and their state is FALSE. Normally closed
contacts are engaged under normal operating conditions and their state is TRUE. Table 5-3 lists commonly
used graphic symbols of contacts in Invtmatic Studio ladder diagrams and their descriptions.

Table 5-3 Graphic Symbols and Descriptions of Contact Elements

Graphic

Symbol Description

Type

If the current Boolean variable value corresponding to the contact is

TRUE, the contact is engaged; if the state of the link element on the left

Normally Open . side of the contact is TRUE, the state TRUE is transmitted to the right
Contact side of the contact, making the state of the link element on the right

side TRUE. Conversely, when the Boolean variable value is FALSE, the

state of the right link element is FALSE.

If the current Boolean variable value corresponding to the contact is

FALSE, the normally closed contact is engaged. If the state of the link

element on the left side of the contact is TRUE, the state TRUE is

1T transmitted to the right side of the contact, making the state of the link

element on the right side TRUE. Conversely, when the Boolean variable

value is TRUE, the contact is disengaged and the state of the right link

element is FALSE.

Multiple contacts can be connected in series by inserting contacts on

the right side. When the multiple contacts in series are all engaged,

the last contact can transmit the TRUE state.

Normally
Closed Contact

Insert Right it
Contact

202512 (V1.1) 74

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Graphic

Description
Symbol P

Type

Multiple contacts can be connected in parallel, and normally open
contacts can be inserted in parallel on the lower side of the contacts.
Only one of two parallel contacts needs to be TRUE

for the parallel line to transmit the TRUE state.

Multiple contacts can be connected in parallel, and normally closed
contacts can be inserted in parallel on the lower side of the contacts. A
normally closed contact is defaulted to

engaged. If the current Boolean variable value corresponding to the

Insert Normally
Open Contact o !
in Parallel

Insert Normally
Closed Contact g

in Parallel contact is FALSE and the state of the link element on the left is TRUE,
the right side of the parallel contact transmits the TRUE state.
Insert Upper Multiple contacts can be connected in parallel, and normally open
Normally Open o contacts can be inserted in parallel on the upper side of the contacts.
Contactin Only one of two parallel contacts needs to be TRUE
Parallel for the parallel line to transmit the TRUE state.

2. State transmission rules

Based on the state of a contact and the state of the link element on the left side of the contact, the state of

the graphic symbol on the right side can be determined according to the following rules.

When the state of the graphic element on the left side of the contact is TRUE, its state can be transmitted to
the graphic element on the right side of the contact according to the following principles:

® [fthe state of the contact is TRUE, the state of the graphic element on its right side is TRUE.
® [fthe state of the contact is FALSE, the state of the graphic element on its right side is FALSE.

When the state of the graphic element on the left side of the contact is FALSE, no matter what the state of
the contact is, its state cannot be transmitted to the graphic element on its right side, that is, the state of the
graphic element on its right side is FALSE.

When the graphic symbol on the left side of the contact changes from FALSE—TRUE, its associated variables
also change from FALSE—TRUE, and the state of the graphic symbol on the right side of the contact changes
from FALSE—TRUE, remains TRUE for one cycle, and then becomes FALSE, which is called rising edge
triggering.

When the graphic symbol on the left side of the contact changes from TRUE—FALSE, its associated variables
also change from TRUE—FALSE, and the state of the graphic symbol on the right side of the contact changes
from TRUE—FALSE, remains FALSE for one cycle, and then becomes TRUE, which is falling edge triggering.

5.3.4.5 Coil

1. Coiltype

A coil is a graphic element in a ladder diagram. The coil in the ladder diagram follows the coil terminology in
an electrical diagram and is used to indicate the state change of a Boolean variable.

According to different characteristics of coils, they can be divided into momentary coils and latched coils,
and latched coils are further divided into set coils and reset coils. Table 5-4 lists the commonly used graphic
symbols of coils in the ladder diagram of Invtmatic Studio and their descriptions.

Table 5-4 Graphic Symbols and Descriptions of Coil Elements

Type Graphic Description
P Symbol 2
The state of the left link element is transmitted to the associated Boolean
. variable and the right link element. If the state of the link element on the
Coil i . i . -
left side of the coil is TRUE, the Boolean variable of the coil is TRUE;
otherwise, it is FALSE.

202512 (V1.1) 75

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Type Graphic Description
Symbol
Thereis an Sin the coil. When the state of the left link element is TRUE, the
Set Coil = Boolean variable of the coil is set and remains set until it is reset by the

reset coil.

Thereis an R in the coil. When the state of the left link element is TRUE, the

Reset Coil i Boolean variable of the coil is reset and remains reset until it is set by the

set coil.

2. Coil state transmission rules

A coil is a graphic element in a ladder diagram that transmits the state of the horizontal or vertical link
element on its left side to the horizontal link element on its right side without modification. During the
transmission process, the states of the left associated variables and direct addresses are stored in
appropriate Boolean variables. Conversely, a negated coil is a graphic element in a ladder diagram that first
inverts the state of the horizontal or vertical link element on its left side and then transmits it to the
horizontal link element on its right side.

A set/reset coil maintains the state of the horizontal link element on its left side for one evaluation cycle at
the moment when the state changes from FALSE to TRUE or from TRUE to FALSE, and transmits the state of
the horizontal link element on its left side to the horizontal link element on its right side at other times.

Arising edge/falling edge jump coil maintains its associated variable for one evaluation cycle at the moment
when the state of the horizontal link element on its left side changes from FALSE to TRUE or from TRUE to
FALSE, and transmits the state of the horizontal link element on its left side to the horizontal link element on
its right side at other times.

Thereis no rule on the right side that only one element can be linked, so you can expand elements on the
right side to simplify the program. For example, other coils can be connected in parallel on the right side, as
shown in [Example 5.22].

[Example 5.22] Transmission of coil state.

Figure 5-28 Transmission of Coil State

bInput blutputWVarl

I [)

bCutputWVarl

)

Figure 5-28 shows the coil state transmission process. In the figure, when the contact binput is closed, the
state of the link element on its right side is TRUE, and it is connected to the coils bOutputVarl and
bOutputVar2 after passing through the horizontal and vertical link elements respectively, and also sets their
states to TRUE.

3. Double-coil

The so-called double-coil means that the same coil is used twice or more in the user program. This
phenomenon is called double coil output. In Figure 5-29 a), there are two coils with the output variable
"bOutputVarl". In the same scan cycle, the logical operation results of the two coils may be exactly opposite,
that is, one coil of the variable bOutputVarl may be "powered on" while the other may be "powered off". For
the control of the variable bOutputVarl, what really works is the state of the last coil of the variable
bOutputVarl.

In addition to affecting the external load, the on/off state of the coil of the variable bOutputVarl may also
affect the state of other variables in the program through its contact. Therefore, double coil output should

202512 (V1.1) 76

INVT Medium and Large-Scale PLC Programming Manual

Programming Language

be avoided as much as possible, and the parallel connection method as shown in Figure 5-29 b) should be

used to solve the double coil problem.

Figure 5-29 Double Coil Example

bIrﬁplﬁtl blﬁplﬁtz o bout%“ivarl bInputl bInput2 bOutputVarl
/
i g 11 []
bInputd bInput3

bInputd bInputl e bCutputVarl n.n nn

N m i UL I

|IEg] U

a) Double coil b) Double coil avoidance

As long as it can be ensured that only the logical operation corresponding to one of the coils is executed in

the same scan cycle, such double coil output is allowed. The following 3 situations allow double coil output.

® |ntwo program segments with opposite judgment conditions (such as automatic program and manual
program), double coil output is allowed, that is, the coil of the same variable can appear once in each of
the two program segments. In fact, the PLC only executes one coil output instruction of the double coil
element in the program segment being processed.

® |ntwo subprograms with opposite calling conditions (such as automatic program and manual

program), double coil output is allowed. That is, the coil of the same variable can appear once in each
of the two subprograms. The instructions in a subprogram are only executed when the subprogram is

called, and are not executed if the subprogram is not called.

® Toavoid double coil output, the set/reset instruction can be used multiple times for the same variable.

5.3.4.6 Function and Function Block Calls

If you want to call a function or function block, you must use an operation block, which can represent all
POUs, including function blocks, functions, and even programs. Function blocks include timers, counters,

etc., and can be inserted into FBD and LD rungs. Operation blocks can have arbitrary inputs and outputs. For
detailed description of graphic symbols of functions and function blocks, see Table 5-5.

Users can insert function blocks and programs along with contacts and coils. In the network, they must have
one input and one output with Boolean values and can be used like contacts at the same position, that is, on
the left side of the LD network.

Table 5-5 Graphic Symbols and Descriptions of Function and Function Block

Type Graphic Description
oI Symbol s

Insert Insert a function or function block, and select the function or function

Operation T block y.ou vyant to use with the mouse acco.rfjlng .to the pqp-up dialog
box. It is suitable for users who are not familiar with functions and
Block .
function blocks.

Insert Null Insert a rectangular block directly and directly enter the name of the
Operation IF function or function block at the "?2??" position. It is suitable for users

Block who are familiar with functions and function blocks.

Insert

. Only when EN is TRUE will the function or function block be executed

Operation . -

Block IF and allowed to transmit the state downstream. It is suitable for users
. o¢ who are not familiar with functions and function blocks.

with EN/ENO
Insert Null Insert a rectangular block with EN/ENO and directly enter the name of
. the function or function block at the "???" position.

Operation

Block £F Only when EN is TRUE will the function or function block be executed
. o¢ and allowed to transmit the state downstream. It is suitable for users

with EN/ENO who are familiar with functions and function blocks.

202512 (V1.1)

7

INVT Medium and Large-Scale PLC Programming Manual Programming Language

The ladder diagram programming language supports calling functions and function blocks. When calling
functions and function blocks, please note the following:

1. Inaladderdiagram, functions and function blocks are represented by a rectangular box. A function can
have multiple input parameters but only one return parameter. A function block can have multiple
input parameters and multiple output parameters.

2. Theinputs are listed on the left side of the rectangle box while the outputs are listed on the right side of
the rectangle box.

3. The names of functions and function blocks are displayed in the upper middle part of the box. Function
blocks need to be instantiated, and the instance names are listed in the upper middle part outside the
box. The instance name of a function block is used as its unique identifier in the project.

4. Toensure that energy can flow through a function or function block, each called function or function
block should have at least one input and output parameter. To execute a connected function block, at
least one Boolean input must be connected to the vertical left power rail via a horizontal rung.

5. When calling a function block, you can directly fill in the actual parameter value at the external
connecting line of the function block of the internal formal parameter variable name.

[Example 5.23] Actual parameter setting for a function block call.

In Figure 5-30, the TON delayed ON function block is called, where TON_1 is the instance name of the
instantiated function block TON. The input formal parameter PT of the function block is set to t#5s. Q and ET
are output formal parameters. When output formal parameters are not needed, such as ET in the example,
the variable can be left unconnected.

Figure 5-30 Actual Parameter Setting for a Function Block Call

TON_1
bitartButton bEmg_Stop TON bWorking
L Ll v 0 J 1
ET | T£5=

bWorking

L

t#53 — BT

It can be seen that the output parameter Q of the function block TON is connected to the coil bWorking. It
means that when the contact bStartButton is TRUE and bEmg_Stop is FALSE for more than 5 s, bWorking is
TRUE. When bEmg_Stop is off, namely TRUE, bWorking is FALSE.

If there are no dedicated input and output parameters for EN and ENO, the functions and function blocks are
automatically executed and their states are transmitted downstream. In [Example 5.23], a function block
with EN and ENO is called. In the Toolbox, you can choose to insert a standard operation block " f£F Baox ",
or a function block " fF Box with ENJENO " with EN/ENO. You can drag and drop to copy or move it in the
editor. Figure 5-31 a) and b) are diagrams comparing the standard operation block and the operation block
with EN/ENO.

Figure 5-31 Comparison of Two Types of Operation Blocks in the FBD

ADD
ADD
777 — 722 222 —EN + ENO——
237 — + ::: : =222
a) Standard operation block b) Function block with EN/JENO

In Figure 5-31 a), as long as the front-end conditions are met, the function block will be executed directly,
while in b), the function block will be executed only when EN is TRUE. Otherwise, even if all the front-end

202512 (V1.1) 78

INVT Medium and Large-Scale PLC Programming Manual Programming Language

conditions are met, the function block will not be executed by the program. If the input signal of EN in b) is
set to the constant "TRUE", the effects of a) and b) are exactly the same.

[Example 5.24] Call a function block with EN and ENO.

Figure 5-32 shows a function block with EN and ENO. the Boolean input bEnable is used to start the counter
function block CTU_0, and bWorking is used as the state variable signal that the function block is enabled.

Figure 5-32 Call of a Function Block with EN and ENO

CTU o
bEnable CTO bWorking
il (8 |
==
bCounter cu T Qm=bDone
bReset RESET CV|-nCurrentValue

999 BV

It can be seen that when bCounter has a rising edge trigger signal, the formal parameter output variable CV
isincremented by 1.

® When EN is FALSE, the operation defined by the function block body is not executed and the value of
ENO is also FALSE accordingly.

® When the value of ENO is TRUE, it means that the function block is being executed.

5.3.4.7 Assignment

The assignment function can be understood as the assignment of inputs/outputs to operation blocks. In the
Toolbox, you can choose to insert the " EUHH Assignment " tool and drag it to the editable field of the program.
Then, a small gray diamond pattern will appear at the input and output interface corresponding to the
operation block in the editable field. Readers can directly drag it to the interface. After insertion, the text
string "???" can be replaced with the name of the variable to be assigned, or you can use the (...] button to
call the "Input Assistant". At this time, the assignment of the input/output interface variables of the
operation block has been completed. The assignment view is shown in Figure 5-33.

Figure 5-33 Assignment View

277?

GG

777 —
777 —

5.3.4.8 Jump Execution

Jump execution control element: A jump execution control element is represented by a Boolean signal line
terminated in a double arrowhead. The signal line for a jump condition originates at a Boolean variable, at a
Boolean output of a function or function block, or on the power flow line of a ladder diagram.

Jumps are divided into conditional jumps and unconditional jumps.
When a jump signal originates at a Boolean variable or at a Boolean output of a function or function block,

the jump is a conditional jump. A jump occurs only when program control executes to the jump signal line of

the designated network label and the Boolean value is TRUE.

If the jJump signal line originates on the left power rail line of a ladder diagram, the jump is unconditional. In
the function block diagram programming language, if a jump occurs when the Boolean constant is 1, the

jump is also unconditional. The graphic symbols of jump control elements are listed in Table 5-6.

Table 5-6 Graphic Symbols of Jump Control Elements

. Graphic Symbol of Execution .
Execution Control Type o y Description
Control Element
Unconditional | LD language TEUE —)Lﬂbel Unconditional jump to Label

202512 (V1.1) 79

INVT Medium and Large-Scale PLC Programming Manual Programming Language

. Graphic Symbol of Execution .
Execution Control Type Description
Control Element
Jump directly
FBD language —Pp Label
bInput
LD language
Conditional guag Il PLabel |When blnputis 1, conditional jump
Jump to Label
FBD language bInput —pLabel
bInput
LD language
Conditional guag I 1 4RETURN D |\yhen binputis 1, the conditional
Return jump returns
FBD language bInput —4RETURN p

Jump target: In a program organization unit, the jump target is a label within the program organization unit
where the jump occurs. It indicates that after the jump occurs, the program will start execution from this
target.

Return: Return is divided into two types: conditional return and unconditional return.

The conditional return is applicable to functions and function blocks. When the Boolean input of the
conditional return is TRUE, program execution will return to the called entity. When the Boolean input is
FALSE, program execution will continue in the normal manner, and an unconditional return is reached by
the physical end of the function or function block. As shown in Table 5-6, connecting the RETURN statement
directly to the left rail indicates an unconditional return.

Configuration of jump execution: Insert "—=" in the Toolbox, and after inserting — representing a jump,
replace the automatically entered "?2?" with the label of the jump target. You can directly enter the label of

the target or click the browse key "I " to use the Input Assistant to select one, as shown in Figure
5-34. The system will automatically filter the available labels for users to choose.

Figure 5-34 Jump Input Assistant

Input Assistant

Text Search Categories

Labels a MName
= Labe2
= Labe3
w= Label

[Example 5.25] Jump statement example.

In cylinder control, the extension signal of the cylinder solenoid valve is bExtrent. If the feedback signal
bExtrented_Sensorl of the extension sensor is not received within 5 s after the extension signal bExtrent is
sent, it jumps to the alarm program, and the variable declaration and program are as follows.

PROGRAM PLC_PRG

VAR
bExtrent:BOOL;
bExtrented_Sensor1:BOOL;
fb_TON:ton;

END_VAR

202512 (V1.1) 80

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-35 Jump Statement Example Program

AND
bExtrent — —}Alarm

fb_TON

ton
bExtrent —|IN Q

t$5s —PT ET

bExtrented Sensorl —O)

Figure 5-35 shows an example program for the jump statement. Finally, when the output signal Q of the
fb_TON function block and the bExtrent signal are met at the same time, the output signal Alarm of the AND
logicis set to TRUE.

5.3.5 Application Examples
[Example 5.25] Flashing signal light.

Control requirements

Use timers and logical functions to construct a flashing signal light system. This circuit output can turn the
signal light on/off at a certain cycle.

Programming

The program realizes the control requirements of the flashing signal light system by switching bLamp and
bLamp1l on/off alternately. The program is implemented by using the ladder diagram shown in Figure 5-36.

Users can use t_SetValue to set the ON/OFF switching time, such as 500 ms. The specific variable definition

is as follows.

PROGRAM

PLC_PRG VAR
fb_TON:ton; //TimeDelay
t_SetValue:TIME:=t#500ms; //SetTime
bLamp AT%QX0.0:BOOL,; //Output0
bLampl AT%QX0.1:BOOL; //Outputl

END_VAR

Figure 5-36 Ladder Diagram Program for a Flashing Signal Light System

fk TON
fb_TON.Q TON XOR bLamp
I/ N 0]
t_SetValue —|PT ET |-
bLampl
/]

bLamp

I

202512 (V1.1) 81

INVT Medium and Large-Scale PLC Programming Manual Programming Language

The output effect is shown in Figure 5-37. The output curves of bLamp and bLamp1 are exactly opposite,
and the time for their state switching is exactly 1 s.

Figure 5-37 Output Curves of Flashing Signal Lights

B] v e e ey e e P P

S ey sree et e b e D et e Tt

[Example 5.26] pH control system.
Control requirements

pH control is often required in wastewater treatment or fermentation processes. Since the controlled
objects of the pH control system have nonlinearity and time delay behaviors, nonlinearity and time delay
compensation control schemes are commonly used. However, the following control strategy can also be
used in a simple control scheme: when the measured pH value exceeds the set acidity value, wait for a
certain period of time and then add alkaline liquid for a certain period of time. When the pH exceeds the set
value, the contact PHH is closed. Conversely, when it is less than the set value, the alkali addition valve is
bValvesl. The control scheme is "Look and Adjust".

When the pH is controlled in the linear region, it can be assumed that the change in pH during the control
process is linear, that is, when alkali or acid is added for neutralization, the change in pH is linear. Generally,
when the difference between the set upper limit SPH and the set lower limit SPL is small, a linear
relationship is established.

Assuming the time required for the pH value to change from SPL to SPH during the fermentation process is t,
and the time required for the pH value to change from SPH to SPL after adding alkali is t2, the time delay can
be set to t1=t/2, and the time for the alkali addition control valve to open is t2.

The actual set value for pH control SP = (SPH + SPL) / 2. Reducing the difference between SPH and SPL is
beneficial to improving control accuracy.

The startup condition of the alkali addition control valve bValvesl is the expiration of the set time of the
timer t1; therefore, t1.Q is used as the startup condition in the program. The stop condition of the alkali
addition control valve bValvesl is the expiration of the set time of t2; therefore, t2.Q is used as the stop
condition in the program.

The startup condition of the timer t1 is that pH reaches the set value SP; therefore, the rising edge of the
contact PHH is used to trigger the fb_Trigger function block, and its signal is temporarily stored by the RS
function block. The startup condition of the timer t2 is the expiration of the set time of the timer t1.

202512 (V1.1) 82

INVT Medium and Large-Scale PLC Programming Manual

Programming Language

A -7

SPH

SP

SPL

v

PHH

., —>

L J

bValves 1

Programming

According to the above control requirements, the pH value control program is written using the ladder
diagram programming language, and its variable declaration and program are shown in the figure. Two

timers are used in the program.

END_VAR

PROGRAM PLC_PRG

t1,t2:ton; // Timers tl, t2
PHH:BOOL,; // Set value exceeding signal
bValvesl AT%QX0.0 :BOOL; // Alkali addition control valve

fb_R_Trig:R_Trig;
fb_RS_0,fb_RS_1:RS;

bEValwesl

£b_B_Trig

ﬁ B Trig

{ [t CLE o

£b_R3_0 £1
B _Trig.Q S ToN
11 SET o Q
ET

2.0

1

11 RESET1

£§20s —{BT
&2

1.0 TON

— ———m o
££50= — BT ET|
£b_RI_1

tl.0 BS
— [——s=eT o

2.0
—— [——rEsET2

(]

202512 (V1.1)

83

INVT Medium and Large-Scale PLC Programming Manual Programming Language

5.4 Instruction List (IL)

Instruction List (IL) is a low-level programming language defined in the IEC 61131-3 standard and resembles
assembly. It is easy to learn and simple to implement, and can be downloaded directly to the PLC. However,
IL lacks effective tools for solving large and complex control problems, so it is rarely used in these scenarios.
Nevertheless, as a basic programming language, IL occupies an important position in PLC programming due
to its versatility and simplicity.

5.4.1 Introduction to the Instruction List Programming Language

An instruction list (IL) is composed of a sequence of instructions. Each instruction begins in a new line and
contains an operator and operands immediately following the operator. The operands are variables and
constants defined in the IEC 61131-3 standard.

The instruction list is a line-oriented language, similar to the assembly language. An instruction is a
command that can be executed by the PLC. It must be described strictly in lines, and blank lines are allowed
as nullinstructions.

Basic format:

1. Instruction format: an operator, the instruction for executing a specific operation; an operand, the
variable or constant that the instruction acts on; a label, optional, the instruction is preceded by a label
and followed by a colon; annotation, optionally added after the operand.

2. Multiple operands: Some operators require several operands, separated by commas.
The instruction list programming language has the following characteristics:

® Easyto learn: The instructions are simple to operate and easy to master, suitable for programming
small and simple control systems.

® Powerful operators: Operators are used to manipulate variables of all basic data types and call
functions and function blocks.

® Directinterpretation and execution: The instruction list programming language can be directly
interpreted and executed inside the PLC, which is suitable for most PLC manufacturers.

® Error detection: Most programs written in the instruction list programming language cannot detect
errors until they are run.

® | anguage conversion: Programs written in the instruction list programming language are difficult to
convert to other programming languages, while programs written in other programming languages are
easy to convert to the instruction list programming language.

Program execution sequence

The instruction list programming language is executed from top to bottom, as shown in the figure below.

202512 (V1.1) 84

INVT Medium and Large-Scale PLC Programming Manual

Programming Language

PLC_PRG X
1| PROGRAM PLC EPRG
=] 2| wAR

fk Tonl:ton;

fk Ton2:ton;

5 dwVar:DWORD

& dwEe3: DWORD
t_TimeVarl:TIME:=T#200M5;
t_TimeVarZ:TIME;

variable definition area

Programming example in the IL editor

Instruction format

E bVarl:BOOL;
o 100 % |8 v
-
1
LD bvarl
ST fb Tonl.IN |starts timsr with rising edge)
jmpe ml o
cal fb Tonl(description
PT:=t_ TimeWVarl,
ET:=>t TimeVar2)
LD fb Tonl.Q
fb Ton2.IN
(i operator modifier
1.8
Label
LD dwVar
ADD 230
5T dwRes

In the instruction list programming language, instructions have the following format.

Label: Operator/Function Operand Annotation

[Example 5.27] Use the instruction list to realize the start, operation, and stop control of a motor.

1
STRRT:
LD bstart
OR bHeld
ANDH bStop
ST EDcne

The program in [Example 5.27] is used to perform start, operation, and stop control on the motor of a device.
In the program, the label is START, and the first line of instruction stores the result of the variable bStart in
the accumulator. The second line of instruction is used to perform a logical OR operation on the result of the
first line of instruction and the bHold output hold signal, and the result is still overwritten in the
accumulator. The third line of instruction is used to perform a logical AND operation on the negated result of
the second line of instruction and the stop signal bStop, and the result is still stored in the accumulator. The

fourth line of instruction is used to output the result in the current accumulator to the variable bDone.

5.4.2 Link Element

An instruction list is composed of a sequence of instructions. Each instruction begins on a new line and
contains an operator with optional modifiers, and, if necessary for the particular operation, one or more
operands separated by commas. Table 5-7 lists the definitions of operators and modifiers.

202512 (V1.1)

85

INVT Medium and Large-Scale PLC Programming Manual

Programming Language

Table 5-7 Semantics of Operators and Modifiers

Operator |Modifier Meaning Example
LD N Load the (negated) operand into the accumulator LD ivar
Store the (negated) value in the accumulator into the operand .
ST N . STiErg
variable
Set the operand (Boolean) to TRUE when the value in the
S - . SbVvarl
accumulatoris TRUE
Set the operand (Boolean) to TRUE when the value in the
R - . R bVarl
accumulator is FALSE
Bitwise AND operation of the value in the accumulator and the
AND N, (AND bvar2
(negated) operand
Bitwise OR operation of the value in the accumulator and the
OR N,(ORxVar
(negated) operand
Bitwise XOR operation of the value in the accumulator and the XOR
XOR N, (
(negated) operand N,(bVarl,bVar2)
NOT - Bitwise negation of the value in the accumulator -
ADD (Add the value in the accumulator to the operand and copy the ADD
result to the accumulator (ivarl,ivar2)
Subtract the operand from the value in the accumulator and)
SUB (SUBiVar2
copy the result to the accumulator
MUL (Multiply the value in the accumulator by the operand and copy MUL iVar2
the result to the accumulator
Divide the value in the accumulator by the operand and copy
DIV (DIV 44
the result to the accumulator
Check if the value in the accumulator is greater than the
GT (GT23
operand and copy the result (Boolean) to the accumulator; >
Check if the value in the accumulator is greater than or equal to
GE (the operand and copy the result (Boolean) to the GE ivar2
accumulator; >=
Check if the value in the accumulator is equal to the operand .
EQ (EQivar2
and copy the result (Boolean) to the accumulator; =
Check if the value in the accumulator is not equal to the .
NE (NE iVarl
operand and copy the result (Boolean) to the accumulator; <>
Check if the value in the accumulator is less than or equal to
LE (the operand and copy the result (Boolean) to the accumulator; LE5
<=
Check if the value in the accumulator is less than the operand,
LT (copy the result (Boolean) to the accumulator, and jump LT cvarl
unconditionally (conditionally) to the label; <
JMP CN |Unconditional (conditional) jump to the label JMPN next
(Conditionally) call a program or function block (when the
CAL CN . . ., CAL progl
value in the accumulator is positive)
RET Return from the current POU and jump to the called POUEIE! RET
Conditional: Return from the current POU and jump to the
RET C . . . RETC
called POU only if the value in the accumulator is TRUE
Conditional: Return from the current POU and jump to the
RET CN . . . RETCN
called POU only if the value in the accumulator is FALSE
) - Evaluate the delayed operand -

202512 (V1.1)

86

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Note:

® The accumulator always stores the current value, which is generated when there is a subsequent
operation. The operand of CAL should be the instance name of a called function block.

® Theresult of the NOT operation is the bit negation of the current result. The modifier N indicates a
negation operation. The RET operator does not require an operand.

® The modifier C indicates that the instruction is executed only if the result of the current operation is
Boolean TRUE (or when the Boolean value of the operator is FALSE in combination with the "N"
modifier).

® Anoperator can have more than one modifier at the same time, or have only one or none. For example,
the JMP operator can have three formats: JMP, JMPC, and JMPN.

The left parenthesis "(" indicates that the operation of the operator is deferred until a right parenthesis ")" is
encountered. Therefore, this operator can be used to implement program block operations and master
control operations in traditional PLCs.

5.4.2.1 Operand

Operands can represent variables or symbolic variables directly. For example:
LDA: It indicates setting the current value equal to the value corresponding to the symbolic variable A.

AND%IX1.3: It indicates that the current result is ANDed with the third bit of the input unit 1, and the result is
used as the current value.

JMPABC: It indicates that when the current calculated value is the Boolean value 1, execution starts from the
position labeled ABC.

RET: It is an operator without operands. When this instruction is executed, the program will return to the
instruction after the original breakpoint. Breakpoints are caused by function calls, function block calls, or
interrupt subprograms.

5.4.2.2 Instruction

The instruction list programming language defined in the IEC61131-3 standard summarizes the traditional
instruction list programming language by taking its strengths and overcoming its weaknesses, uses
functions and function blocks, and employs the overload properties of data types, etc., making the
programming language simpler and more flexible and the instructions easier. Its main advantages are as
follows:

Function and function block calls:

® Standard library calls: Timer and counter function block instructions can be directly called in the
instruction list programming language through the standard library, making complex function
implementation easier.

® Simplified programming: By calling predefined functions and function blocks, you can reduce
programming workload and improve code readability and maintainability.

Overload properties of data types:

® Simplified operation: The overload properties of data types allow the same operation to be performed
on variables of different data types, which simplifies the operation process and makes the code more
concise and intuitive.

Program block combination:

® Utilization of parentheses: You can use parentheses to easily combine program blocks together and
realize the functions of instructions such as master control, making the implementation of complex
logic more intuitive.

202512 (V1.1) 87

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Edge detection:

® Differentiation function: Signals are differentiated by using edge detection, which simplifies the
instruction set and makes the edge detection of input signals easier.

Data transmission instructions:

® Assignment function MOVE: Data transmission instructions can be directly implemented using the
assignment function MOVE, making data transmission operations more direct and clear.

5.4.2.3 Operator

Before introducing the operator, we need to introduce a concept, namely the accumulator, which is
particularly important in the instruction list programming language.

The instruction list programming language provides an accumulator to store the current result. Unlike the
accumulator used in a traditional PLC, the number of storage bits of this standard accumulator is variable,
that is, the standard instruction list programming language provides a virtual accumulator with a variable
number of storage bits, and the number of storage bits depends on the operands and data types being
processed. Similarly, the data type of the virtual accumulator may also be changed to adapt to the data type
of the operand of the latest operation result.

During the execution of instructions, the data storage method is as follows:
Operation result: = current operation result operation operand

Therefore, under the operation defined by the operator, the current operation result and the operand
undergo the operation defined by the operator. The operation result is used as a new operation to store the
result back into the accumulator of the current operation result.

5.4.2.4 Modifier

There are three modifiers, namely C, N, and N,(, as shown in Table 5-8. The modifier itself cannot be
constructed independently and needs to be combined with the preceding operator to form a complete

statement.
Table 5-8 Modifier Instructions
Modifier Use Function

c Use in combination with JMP, CAL, |This instruction is executed only when the result

and RET of the preceding expression is TRUE
N Use in combination with JMPC, |This instruction is executed only when the result

CALC, and RETC of the preceding expression is FALSE
. Negate the operand (rather than the value in the

N,(Miscellaneous
accumulator)

The modifier C indicates that the instruction is executed only if the result of the current operation is TRUE
(or when the Boolean value of the operator is FALSE in combination with the "N" modifier). The logic of the
modifier N is exactly opposite to that of C.

[Example 5.28] Modifier example.

- LDy TRUE
ENDN Evarl
JMPC ml
LDH bvarz2
st bRes

2
ml:
14 bvarz2
st bRes

First, TRUE is loaded into the accumulator, and then the value of the variable bVarl is negated and ANDed

202512 (V1.1) 88

INVT Medium and Large-Scale PLC Programming Manual Programming Language

with the value in the accumulator. At this time, the ANDN instruction is used. If AND is used, it means that the
AND operation is performed directly. If the result is TRUE, the program jumps to m1. Otherwise, the variable

bVar2 is negated and loaded into the accumulator and output. This instruction uses LDN and the modifier N,
which also means negation.

5.4.3 Operation Instructions

Theinstruction list programming language includes 9 categories of instructions, which are described below.

5.4.3.1 Data Access Instructions

Data access instructions indicate operations that read data from data storage units. Standard instructions
use LD and LDN instructions to represent access and access negation instructions. The programming
language format is as follows:

LD operand // Store the content in the data storage unit specified by the operand as the
current result.

LDN operand // Negate the content in the data storage unit specified by the operand and then
store it as the current result.

LD is short for Load, while LDN is short for LoadNot.

The operation object of a data access instruction, that is, the operation object of LD or LDN, is an operand. It
is a read operation on the content in the data storage unit corresponding to the operand. The read data is
stored in the operation result accumulator, which is also called the current value.

The LD instruction is used to read the data of a normally open contact, while the LDN instruction is used to
read the data of a normally closed contact.

Similar to a relay logic circuit, for normally open contacts, that is, the movable contacts, the LD access
instruction is used. For example, the LD%IX0.0 instruction executes the operation of accessing the contact
state of the operand address %IX0.0. From the register point of view, the operation process is to transmit the
input state of the address %I1X0.0 to the operation result accumulator. Figure 5-38 a) and b) show instruction
examples of a relay logic circuit and the instruction list programming language.

Figure 5-38 Examples and Operation Processes of LD and LDN Instructions

$IX0.0 $0%0.0 | LD #IX0.0
] i
I () | sr 30X0 .0
FILX0.1 $CHO0.1
W) LDN 21¥0.1
5T 20X0.1
a) Relay logic circuit B) Instruction list programming language

Figure 5-39 Operation Processes of LD and LDN Instructions

‘ %IX0.0 input state

The figure shows the execution process of data access. For normally closed contacts, that is, the movable
contacts, the LDN logical negation instruction is used. For example, the LDN%IX0.1 instruction executes the
operation of accessing the contact state of the operand address %IX0.1. From the register point of view, the
operation process is to negate the state of the input state register of the address %IX0.1 and then transmit
the negated result to the operation result accumulator.

Table 5-9 Examples of LD and LDN Instructions

Instruction Description Data Type of the Accumulator
LD FALSE |The currentvalueisequal to FALSE Boolean

202512 (V1.1) 89

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Instruction Description Data Type of the Accumulator
LD TRUE The current value is equal to TRUE Boolean
LD 3.14 The current value is equal to 3.14 Real number
LD 100 The current value is equal to 100 Integer
The current value is equal to the time
LD T#0.5s d Time data
constant 0.5s
The current value is equal to the state of Depend on the type of the variable
LD START

the variable START START

5.4.3.2 Output Instructions

Output instructions are used to transmit the content in the operation result accumulator to the output state
register. Standard instructions use ST and STN

instructions to represent access and access negation instructions. The programming language format is as

follows:
ST operand // Store the current result in the data storage unit specified by the operand.
STN operand // After negating the current result, store it in the data storage unit specified by

the operand.
It should be noted that after executing the ST or STN instruction, the current operation result is still retained
in the data storage unit of the operation result accumulator. ST means Store and STN is short for StoreNot.

Similar to a relay logic circuit, the ST instruction is used for coils. For example, the ST%QXO0.0 instruction
executes the operation of output to the %QX0.0 coil: from the register point of view, the operation process is
to transmit the state of the operation result accumulator to the output address of %QX0.0. Figure 5-40 a)
and b) show instruction examples of a relay logic circuit and the instruction list programming language.

Figure 5-40 Examples and Operation Processes of ST and STN Instructions

$IK0.0 $OM0.0 | LD 3IX0.0

1 [{) | st #0X0 .0

$IX0.1 $ON0.1 LD $IX0.1

1 [{7] | stm #0X0 .1
a) Relay logic circuit B) Instruction list programming language

The figure shows the execution process of data access. Use the STN%QX0.1 instruction to execute the
operation of output to the %QX0.1 de-excitation coil; the operation process is to negate the state of the
operation result accumulator and then transmit the negated result to the address of the output %QXO0.1.

Figure 5-41 Operation Processes of ST and STN instructions

%QX0.0
" | output state

Accumulator

%QX0.1
o output state

Accumulator P Negation

5.4.3.3 Set and Reset Instructions

The standard instruction set uses S and R instructions to represent set and reset instructions. The
programming language format is as follows:
S operand // When the current result is FALSE, set the content in the data storage unit
corresponding to the operand to TRUE and retain it.

R operand // When the current result is TRUE, set the content in the data storage unit
corresponding to the operand to FALSE and retain it.

202512 (V1.1) 90

INVT Medium and Large-Scale PLC Programming Manual Programming Language

This type of instruction has memory properties. After the S operand is executed, the content in the data
storage unit corresponding to the operand is set to TRUE and is memorized and retained until the R operand
instruction is executed. The execution of the R operand instruction sets the content in the data storage unit
corresponding to the operand to FALSE. Likewise, the content in the data storage unit is retained until the S
operand instruction is executed and its content is set to TRUE.

The S and Rinstructions can be implemented by calling the SR and RS function blocks. Compared with
function blocks, the difference lies in that the execution sequence of S and R instructions is determined
according to their positions in the program. Therefore, the precedence determination is different from RS
and SR. In addition, function blocks must first set the S and R terminals before executing the call instruction.

S stands for Set, while R stands for Reset. Examples of S and R instructions are shown in Table 5-10.

Table 5-10 Examples of S and R Instructions

Instruction Description
SET: LD TRUE The current value is equal to TRUE
The current value is equal to TRUE, and the value of the
variable START is set to TRUE and retained
LD FALSE The current value is equal to FALSE
The current value is equal to FALSE, and the value of the
variable STOP is set to FALSE and retained
RESET: LD TRUE The current value is equal to TRUE
The current value is equal to TRUE, and the value of the
variable STOP is set to FALSE and retained.

S START

S STOP

R STOP

The Sinstruction is a conditional STC output instruction, while the R instruction is a conditional STCN
output instruction. Therefore, when the current result memory is TRUE, the S operand instruction executes
the operation of setting the output operand to a set position. Similarly, the R operand instruction executes
the operation of setting the output operand to a reset position, that is, the operation of set negation.

5.4.3.4 Logical Operation Instructions

Standard logical operations include: AND(N), OR(N), XOR(N) and NOT. The programming language format is
as follows:

Logical operator operand or logical operator N operand

Logical operator: The operand is used to perform a specified logical operation on the content in the current
result memory and the content in the data storage unit corresponding to the operand, and the operation
result is stored in the current result memory as the new current result.

Logical operator N: The operand is used to perform a specified logical operation on the content in the
current result memory and the negated result of the content in the data storage unit corresponding to the
operand, and the operation result is stored in the current result memory as the current result.

[Example 5.29] Motor control program example.

LD
OR
ANDN
ST

nowa e

This example is a typical motor control program. The input variables A and B as well as the output variable C
are all symbolic variables, and their actual addresses must be assigned in the declaration part.

5.4.3.5 Arithmetic Operation Instructions

This type of instruction includes ADD, SUB, MUL, DIV, and MOD. The programming language format is as
follows:

ADD operand // The content in the data storage unit corresponding to the operand is added
to the current result, and the operation result is stored in the current result memory.

202512 (V1.1) 91

INVT Medium and Large-Scale PLC Programming Manual Programming Language

SUB operand // The content in the data storage unit corresponding to the operand is
subtracted from the current result, and the operation result is stored in the current result memory.
MUL operand // The current result is multiplied by the content in the data storage unit
corresponding to the operand, and the operation result is stored in the current result memory.

DIV operand // The current result is divided by the content in the data storage unit
corresponding to the operand, and the operation result (quotient) is stored in the current result
memory.

MOD operand // The current result is modulo the content in the data storage unit

corresponding to the operand, and the operation result is stored in the current result memory.

[Example 5.30] Operation example of the temperature compensation coefficient.

LD 273.15 Access the temperatu

ADD rTeml Add wit
DIV 373.15 It 1
ST rCompensate Output the

[Example 5.30] is used to perform temperature compensation on the gas flow, where rTem1 is the actual
temperature in °C. The program reads 273.15 in the first line; the second line adds the actual temperature
value rTem1 to 273.15 and uses it as the current value. The third line divides this current value by

the designed temperature value, and the result is stored in the current value memory; the fourth line stores
the operation result as the temperature compensation value in rCompensate. It can be seen that the ADD
and DIV operations in the program are both operations of real number data types.

5.4.3.6 Comparison Operation Instructions
Comparison instructions include: GT (>), GE (Z), EQ (=), NE (#), LE (<), and LT (<). The programming
language format is as follows:
GT operand // The current operand > the content in the data storage unit corresponding to
the operand, and the operation result TRUE is sent to the current result register.

GE operand // The current operand = the content in the data storage unit corresponding to
the operand, and the operation result TRUE is sent to the current result register.

EQ operand // The current operand = the content in the data storage unit corresponding to
the operand, and the operation result TRUE is sent to the current result register.

NE operand // The current operand # the content in the data storage unit corresponding to
the operand, and the operation result TRUE is sent to the current result register.

LE operand // The current operand < the content in the data storage unit corresponding to the
operand, and the operation result TRUE is sent to the current result register.

LT operand // The current operand < the content in the data storage unit corresponding to the
operand, and the operation result TRUE is sent to the current result register.

This type of instruction is used to compare the current result with the content in the data storage unit
corresponding to the operand. When the comparison condition specified by the operator is met, the current
result is set to TRUE; otherwise, it is set to FALSE. The comparison instruction changes the data type of the
current result memory to a Boolean data type.

Note:

® Thisinstruction directly stores the comparison result in the data storage unit, and the user can execute
subsequent programs according to the state of the storage unit.

® Comparison operation instructions are suitable for comparing variables of different data types and are
not limited to single-bit comparisons. Therefore, their application scope can be expanded.

202512 (V1.1) 92

INVT Medium and Large-Scale PLC Programming Manual Programming Language

[Example 5.31] Example of a comparison operation instruction.

LD rRealVar

GT 50.0

5T bRed I and 1s bRed to be TRUE
STH bGreen I t 1s not great han or 12l to 50, the green bGreen is set to TRUE

In [Example 5.31], the variable rRealVar is a process measurement value. When its value is greater than 50, it
means that the measurement value is out of limit, and the red alarm bRed is TRUE. Otherwise, bGreen is
TRUE.

5.4.3.7 Jump and Return Instructions
The jump instruction is JMP and the return instruction is RET. The programming language format for each of
themis as follows:
JMP Label // Jump to the label position and then continue execution
RET // Return to the breakpoint at the time of jump and then continue execution
The operand of the jump instruction is a label rather than the address of the data storage unit
corresponding to the operand.
The return instruction has no operands and is used to call a function, function block, or program to return.

JMP is short for Jump. When this instruction is executed, if the current result is TRUE, the jump condition is
met, and the program is interrupted at this point and jumps to the program line where the label is located to
continue execution. It is used in conjunction with the RET instruction to implement the execution of
subprograms. It can be accompanied by a modifier C or N, indicating execution or negation based on the
current result memory content.

RET is short for Return. After this instruction is executed, the program returns and starts execution from the
first instruction after the power failure. It can be accompanied by a modifier C or N, indicating execution or
negation based on the current result memory content.

Note:

® Thejump instruction jumps from the master program to a subprogram. A subprogram cannot jump to
the master program using a jump instruction, but can only return using a return instruction. A
subprogram starts with a label and ends with a RET instruction.

® Thelabelin the program is unique.

[Example 5.32] Example of a jump instruction

LD AUTO Arcess real variables rReallar
JMPC AUTOPRO If AUTO is TRUE, the program jumps to the AUTOFPRO subroutine
JMP MANFRO If AUTO is FALSE, the program jumps to the MANPRO subroutine

[Example 5.32] is used for switching control between automatic and manual programs. When the AUTO
switch is switched to the automatic position, AUTO is TRUE and the program will execute the jump
instruction JMPC. Therefore, the program jumps to the AUTOPRO subprogram and executes the associated
programs under automatic conditions. When the jump condition is not met, the JMP instruction is executed,
so the program jumps to the MANPRO subprogram and executes the associated programs under manual
conditions.

It should be noted here that AUTOPRO and MANPRO are subprogram labels rather than program names.
5.4.3.8 Call Instructions

The standard call instruction of IEC61131-3 is the CAL instruction. The programming language format is as
follows.
CAL operand // Call the function, function block, or program represented by the operand

By executing this instruction, functions, function blocks, and programs can be called to simplify the program
structure and make the program description clear. The general call format is as follows.

202512 (V1.1) 93

INVT Medium and Large-Scale PLC Programming Manual Programming Language

CAL is short for Call, which means calling. The operand of the CAL instruction is a function name or a
function block instance name. Parameters in the instance name are separated by commas.

5.4.3.9 Parentheses Instructions

The IEC61131-3 standard uses parentheses to modify instructions, that is, to perform precedent operations.

The left parenthesis "(" is used to push the current accumulator content into the stack and store the
operation instruction of the operator. At this time, the other content of the stack is moved down one layer.
The right parenthesis)" is used to pop the content in the top layer of the stack and perform the
corresponding operation on the current accumulator content. The operation result is placed in the current
accumulator. At this time, the content of the stack is moved up one layer. Therefore, the left parenthesis is
called an operation delay, and its instantaneous result does not affect the current accumulator.

Table 5-11 Expressive Properties of Parentheses

No. Description/Example
Parenthesized expression
1 AND(LD %IX0.1 OR %IX0.2)
starting with an explicit operator
Parenthesized expression (short
2 form) AND(LD 9%IX0.1 OR %IX0.2)

[Example 5.33] Modify an arithmetic operation with parentheses.

LD rVarl
ADD(rvVar2
MUL (rVar3
ADD rVard
)

)

ST rVar5

In [Example 5.33], the final implemented algorithm is rVarl+rVar2*(rVar3+rVar4). During the entire operation,
the data type must remain consistent. In addition, the data type is transmitted. The operation starts from
the innermost parentheses and moves outwards layer by layer until the outermost parentheses are reached.

LD B8TX1.1

ADD (®IX1.2 contel
OR { 8TX1.3 conte;
AND ®IX1.4

)

)

5T bOutput

LD FALSE The walue of False i1s fed inte the accumulator

OR{ $IX0.0 Gets the value of $IX0.0

AND (2IX0.1 And £IX0.1

b al1 the stack

OR { #IX0D.2 g8 v

ADD #IX0.3 And =IX0.3

) The result of the operation is or calculated with the ceontents of the stack
ST bOutput Send the results to bOutput

[Example 5.35] Application of parentheses in parallel connection of program blocks.

In [Example 5.35], the two instructions starting with OR are two program blocks, which are programs that
connect two contacts in series. Finally, after the OR operation, the operation result is stored in the bOutput
variable.

In mathematical operations, parentheses have a similar function to brackets, that is, the operations outside
the brackets are deferred.

LD rvarl The walue of rVarl 15 fed into th
ADD rvar2 Add rVarZ,send the results into t
MUL (rvar3 The wvalue rVar? is pushed onteo the
5UB rvaré rVar3-rVar4

) Send the results to the accmmulator

[Example 5.36] Delay function of parentheses.

202512 (V1.1) 94

INVT Medium and Large-Scale PLC Programming Manual Programming Language

In [Example 5.36], the operation result is (rVarl+rVar2)*(rVar3-rVar4).

The relationship between the accumulator and the stack is illustrated by the following example.

LD rvarl the accumulator
ADD { ™Var2 the stack

MUOL rvar3 the stack

50B rvar4

)

)] rVarl+(rVar2* (rVar3-rVard))

[Example 5.37] Relationship between the accumulator and the stack.
In [Example 5.37], the data in the stack and the current accumulator data are shown in Table 5-12.

Table 5-12 Changes in Stack Data and Current Accumulator Data

Instruction 1 2 3 4 5 6
Current *
rVarl | rVarl | rVarl rVarl rVarl rVarl+rVar2*(rVar3- rvVar4)
accumulator
Stack 1 - rvar2 | rvar2 rvar2 rVar2*(rvar3-rVar4) -
Stack 2 - - rvar3 |rVar3-rVar4 - -

Finally, the operation result of [Example 5.37] is rVarl+rVar2*(rVar3-rvar4).

Therefore, it is easier to implement more complex operation relationships using the structured text or
ladder diagram language. Jumping from instructions within parentheses can sometimes produce
unpredictable results, so you need to be careful when doing so.

5.4.4 Function and Function Block

5.4.4.1 Function Call

In the instruction list programming language, function calls are relatively simple.
Function Call Method

Enter the function name in the operator field, and use the first input parameter as the operand of LD. If there
are more parameters, enter the next one in the same line as the function name, and add subsequent
parameters separated by commas to this line or the following line. The function return value will be stored

in the accumulator. It should be noted that according to the IEC standard, there can only be one return value.
The programming language format and example of a function call are shown in Table 5-13.

Table 5-13 Programming Format and Example of a Function Call

Type Programming Format Example
LD Parameter LD 0.5 //Readtheradian0.5
Single Function name COS // Call the COS function
parameter |ST Return value ST Varl // Store the operation result 0.87758 in
the variable Varl
LD Parameter 1 LD Varl//Read the value of the variable Varl
Function name Parameter 2 ADD Var2 // Add to the value of the variable Var2
Dual-parameter
ST Return value ST Var3// Store the return value of the
operation resultin Var3
LD Parameter 1 LD Varl//Read the value of the variable Varl
Function name Parameter SEL INO,IN1// Select INO or IN1 as the return
Multi-parameter 2,--,parameter n value according to the value of Varl
ST Return value ST Var2// Store the return value of the

operation result in Var2

The programming language format of a function call with a non-formal parameter list is as follows.

Function name non-formal parameter, non-formal parameter, ..., non-formal parameter,

202512 (V1.1) 95

INVT Medium and Large-Scale PLC Programming Manual

Programming Language

The programming language format of a function call with a formal parameter list is as follows.

Function name (first formal parameter := actual parameter, ..., last formal parameter := actual
parameter)

Examples of function calls

The following two examples of function calls will help you have a clearer understanding.

LD 10 The value of 10 is fed into the accumulator
ADD 10,

12,

14
5T ivarl Send the results to iVarl

[Example 5.38] Example of a non-formal parameter function call.

In [Example 5.38], the ADD function is used to directly implement the addition operation of multiple values.
Therefore, compared with the addition operation of a traditional PLC, the program is simplified. It should be

noted that some traditional PLC products only allow one operand, for example, ADD10. Invtmatic Studio,
however, can be directly superimposed.

is fed into the accumulator

LD strvarl The wvali

RIGHT(strvarl lon onto stack

LEN variable strVarl
SUB 1

)

5T strvarl

[Example 5.39] Example of a formal parameter function call.

Call the RIGHT function. The first parameter of this function is LEN, which is the data length of the variable
strVarl. The second parameter is subl, which is the data length in the current accumulator minus 1 and
represents the number of bits to shift right, that is, 1 bit at a time. If the above program is converted into a
structured text, it becomes as follows:

strVarl := RIGHT(strVarl, (LEN(strVarl) - 1));

5.4.4.2 Function Block Call

Function Block and Program Call Method

In non-formal parameter programming languages, there are two methods to call a function block.

1. The programming language format of a function block call with a formal parameter list is as follows.
CAL function block instance name (formal parameter list)

2. The programming language format of a function block call with parameter reading/storage is as
follows.

CAL function block instance name
Function block and program call example
The following uses the TON function block as an example to illustrate how to call a function block.

[Example 5.40] The program for calling a function block with parameter reading/storage is as follows.

LD 2TX¥1.1 Get the value of §IX1.1

5T fb Timel.IN Assigning ®IX1.1 data to fb Timel.IN
LD T#500ms Access tims T#500ms

ST fb Timel.PT Aszigning T#500ms to _ﬁ:__'?imel.?_'?'
CAL fb Timel Call function block fb Timel

202512 (V1.1)

96

INVT Medium and Large-Scale PLC Programming Manual Programming Language

5.4.5 Application Examples

[Example 5.41] Weighing display example.

In actual industrial production, many devices are equipped with weighing and screening instruments. When
the actual weight of the product does not meet the set value, the product will be considered defective and a
rejection signal will be triggered to reject the product. Such instruments have weighing-related programs.
Control requirements

The weighing instrument stores the gross weight data of the material in the PLC register, uses the weighing
function to subtract the tare weight from the gross weight, and finally outputs the net weight as a REAL type
variable.

Assumptions: gross weight variable: rGrossWeight; tare weight variable: rTareWeigh; net weight variable:
rActuallyWeight.

In order to control the execution of the weighing signal, it is necessary to set the manual trigger signal as the
weighing instruction and use the Boolean variable bStart as the start instruction.

The data display types of gross weight rGrossWeight, tare weight rTareWeight, and net weight
rActuallyWeight are all REAL data types.
Programming
Write the function block FB_Weight, with the function block declaration area shown below.
FUNCTION_BLOCK FB_WEIGHT
VAR_INPUT
bStart: BOOL,;
rGrossWeight:REAL;
rTareWeight:REAL;
END_VAR VAR_OUTPUT
ENO:BOOL;

rActuallyWeight:REAL;
END_VAR

VAR
END_VAR

The logical program of the function block is as follows:

LD bStart Get the value of bStart

ST ENO Ontput the cur ¥

JMPC WEIGHTING If bStart 1s o WEIGHTING
LD 0

5T rActuallywWeight If bStart is False, Send 0 to riActuallyWeight
RET

WEIGHTING:

LD rGrossWelght value of rGrossWeight

SUB rTareWeight rTareWNeight

5T rActuallywWeight end the results to rActuallyWeight

After the program of the function block is completed, the actual test is performed by adding a new program,
calling the function block FB_Weight in the program, and filling in the corresponding input and output
parameters. The final program is shown in the figure below.

202512 (V1.1) 97

INVT Medium and Large-Scale PLC Programming Manual Programming Language

folrieight '
FE_WEIGHT i =
bStart ——bStart ENO w@
rGross\teight raross\teight rActuallyinfeight —| rActually\feight —
rTarelneight 1 arelneight

Weighing program example

For example, the gross weight is 5 (g) and the tare weight is set to 1 (g). Only when bStart is triggered and
becomes TRUE, the final net weight will be 4 (g); otherwise, it will always be 0.

[Example 5.42] Example of a loop operation.
Control requirements

Create a program that calculates the cumulative sum and factorial of numbers from 1 to 10. You can use the
JMPC jump instruction in the program.

Programming
The variable declaration is as follows:
PROGRAM PLC_PRG

VAR
diSum,diProduct:DINT;
i:BYTE;
END_VAR

LD 1 Get initial wvaluoe
5T i
5T diProduct
LD 1]
5T diSum
LOOP:
LD diSum Get the value of diSum
ADD i 1
5T diSum
LD diProduct
MUL i
5T diProduct
LD i
ADD 1 i+1
5T 1
LE 10 is less than 10, the current value is set to 1
JMPC LOOP i, jump te LOOP
EET

The above program can simply perform cumulative sum and factorial operations. The operation result is 55
in diSum and 3628800 in the variable diProduct. It should be noted that when the operation result is larger
than the allowable range of the data type set for the variable, the result will be set to 0. For example, if the
cumulative sum and factorial of 1 to 50 are calculated and the factorial result exceeds the allowable range of
along long integer, the result is set to 0. To solve this problem, you can change the data type of the variable
to a REAL type or DOUBLE PRECISION REAL type.

5.5 Sequential Function Chart (SFC)

The SFC programming language is designed to meet the needs of sequential logic control. During
programming, the process of sequential action flow is divided into steps and transition conditions. The
function flow sequence of the control system is allocated according to the transition conditions, and the
action is performed step by step in sequence, as shown in the figure. Each step indicates a control function
task and is represented by a box. The box contains the ladder logic used to complete the corresponding
control function task. This programming language makes the program structure clear and easy to read and

202512 (V1.1) 98

INVT Medium and Large-Scale PLC Programming Manual Programming Language

maintain, which can greatly reduce the programming workload and shorten the programming and
debugging time. It is used in situations where the system is large in scale and the program relationships are
complex. It features taking the function as the main line, performing allocation in the sequence of function
flow, clear organization, and ease of understanding the user program.

Figure 5-42 Sequential Function Chart Programming Language

Init
Bran.. |
permanent Counting null
3in_test
Branml
run_sin_te _| N | 3in_test run_walk
l%l testl
null 1

5.5.1 Introduction to the Sequential Function Chart Programming Language

Basic structure

A SFC program starts from the initial step. When the transition condition is met, the next step of the
transition condition is executed in sequence, and the series of actions is ended by the END step. The whole
process is shown in Figure 5-43.

Figure 5-43 Basic Process of an SFC Program

1. If the SFC program is started, the initial step, Initial —
i.e. step 0 in the figure, will be executed first; Step 0 (S0) — step

during the execution of the initial step, the
program will check the next transition condition
of the initial step, i.e. whether the "transition
condition 0" in the figure is established. If it is Transition condition 0 _'_
established, the program jumps to the next (t0)
step.

Transition
condition

A

2. Only the initial step is executed before the
"trans!t!on cond!t!on 0" is establ!shed when the Step 1(S1) | ¢—— Step
transition condition 0" is established, the
execution of the initial step will be stopped and
the next step "step 1" of the initial step will be

executed; during the execution of "step 1", the

next transition condition of "step 1" will be Transition condition 1 Transition
checked, that is, whether the "transition (t1) . condition

condition 1" in the figure is established. Block

3. When the "transition condition 1" is
established, the execution of "step 1" will be Step 2 (S2) ¢——Step
stopped and "step 2" will be executed.

4. Execute subsequent steps in sequence in
the order in which the transfer conditions are
established. When the END step is executed,
the corresponding block will end.

END
step

202512 (V1.1)

99

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Program features
1. SFCadvantages
® Best choice for sequential control

The automatic operation sequence can be converted into a graphic description as it is, so it is easy to
program and understand the program.

® Comprehensible structured program

Graphics can be used for hierarchical and modular programming, so it is easy to test run and maintain. As
shown in the figure, the left side is an equipment operation flowchart. Through the SFC programming
language, the flowchart on the left can be directly converted into a program, and the programmer only
needs to add a corresponding logic to each action and add appropriate transition conditions when the

process jumps.
Figure 5-44 Equipment Operation Flowchart Figure 5-45 SFC Diagram
Initial step
Process start
| Transition
condition 1
Pallet confirmation
. Step 1
and clamping
operation
Transition
| condition 2
Drilling Step 2
\ 4 Transition
Release, workpiece condition 3
unloading
Step 3
\ 4
. Transition
Processing condition 4
completed >

® Nointerlocking required between processes (steps)

Since the CPU only operates on the action steps, the forward and backward action logics do not need to be
interlocked. During SFC programming, you do not need to consider interlocking, because if the conditions of
the previous and next steps are not met, the program will not execute other steps. Therefore, there is no
need to consider too much about contact interlocking.

® Same coil shared in multiple processes (steps)

Since the CPU only operates on the action steps, even if the same coil exists in the steps that are not in
motion, it will not be processed as a double coil. (If the coil is the same as that in the master sequential
control program, it will be processed as a double coil.)

® Action state monitoring with graphics

When mechanical equipment stops due to a fault, the current step in which it is stopped can be displayed on
the monitor so that the cause of the shutdown can be found quickly, which is convenient for
troubleshooting. In addition, if there are annotations attached to each step, it will be clear at a glance why
the action stops.

® Standardized design

The program is created graphically according to the control flow, so no matter who writes it, it will be almost
the same with no individual differences, thus achieving standardization of design drawings.

202512 (V1.1) 100

INVT Medium and Large-Scale PLC Programming Manual Programming Language

® Coordinated programming by multiple persons

The control content can be divided into multiple parts, which are written by different people and then
combined into one.

® Operation processing by step

Since the CPU only operates on the action steps, the scan time can be shortened through good
programming methods.

® Easy system design and maintenance

Since the control of the entire system, the individuals, and the machine corresponds to the SFC program

and steps on a one-to-one basis, even personnel with little experience in sequential control programs can

design and maintain the system. In addition, other programmers also use this format to design programs

that are more readable than other programming languages.

® |naddition, by effectively using the functions of SFC, the cycle time of mechanical operation can be
shortened.

2. SFCdisadvantages

® |napplicable control content

Programs such as emergency stop, continuous monitoring, and receiving data from a computer that use
interrupt processing are not sequentially controlled and are therefore not suitable for writing SFC programs.

(If you write a ladder diagram program in the master program to control such content, it will be easier to
summarize and grasp it.)

® Prejudice due to unfamiliarity

Due to unfamiliarity, there may be prejudice that it cannot be used in extremely complex controls.
(Structuring and modularization through SFC can organize the content to be controlled, so only ladder
diagram programming is required).

5.5.2 SFC Structure

In the "Toolbox" of the SFC programming language, you can add SFC tools. An SFC consists of the 6 major
parts listed in Table 5-14, among which steps and transition conditions are the basic elements of SFC. The
various basic elements can be integrated to form several basic structures. Any complex or simple SFC
structure is composed of these basic elements, as shown in Figure 5-46.

Figure 5-46 Basic Structure of an SFC

Step
\Transition
condition
Table 5-14 SFC Toolbox
Graphic ..
Type Description
P Symbol P
SFC consists of a series of steps that are interconnected via directed

Step = links

202512 (V1.1) 101

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Type Graphic Description
P Symbol P
An action is a collection of instructions implemented in other
. languages, such as a collection of statements implemented in IL orin
Transition -
ST,
or a collection of networks implemented in LD, in FBD, or in SFC
. An action instruction can add an entry action and an exit action to a
Action &
step.
Jum The switching between steps is a transition. The step transition is
P ' performed only when the step transition condition is TRUE.
Macro & Add a macro
Branch T Add parallel branches
5.5.2.1 Step

Definition of a step

A step represents a major function in the entire industrial process. It can be a specific time or stage, or an
action performed by several devices. The step belongs to the execution body of an SFC, and all the logical
codes for implementing the execution are included in it. A transition condition determines the state of the
step. When the transition condition of the previous step is met, this step is activated and the activated step
will enter the execution state.

During activation, this step is scanned repeatedly until the transition condition of this step is met, the step
activation is released, execution exits to the next step, and the next step is activated.

Each step in an SFC is represented by a box, which contains the "step name" and the up and down transition
relationships represented by connecting lines. The step name can be edited directly at the current location,
and must be unique within the POU where it is located, which requires special attention when SFC action
programming is used.

Step configuration

There are two types of steps: initial step and normal step. The following will introduce these two different
types of steps one by one.

1. Initial step

The initial step is a step indicating the start of each block. You can select the corresponding "step" by
right-clicking to select "Initial Step" or pressing the " Bl " button in the shortcut menu to set the initial step.
As shown in Figure 5-47 a), the view of the initial step is slightly different from that of the normal step. The
initial step is represented by a double rectangular box (surrounded by a double-sided line), which can be set
by right-clicking, as shown in Figure 5-47 b).

Table 5-15 Step Editing

Graphic
Type Syr:b;l Description
. It is used to set the step currently selected in the SFC editor as the
Initial Step = A
initial step

202512 (V1.1) 102

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-47 Initial Step Setting

Init g
1 Copy
Paste
|J_E| TRUE . Delete
Select All
S,tep[] Browse »
Init Step
EJ1 Add Entry Action
A Add Exit Action
Ft Insert Step-transition
L Fi Insert Step-transition After
Init
a) Initial step view b) Initial step setting

2. Normalstep

The "normal step" currently being executed is called an "active step". In online mode, the "active step" is
filled in blue.

Each step consists of an action and a flag that indicates whether the step is active. If a single-step action is
being executed, the step will be displayed as a blue frame, as shown in the figure below.

Init T#0m=

step is activated

RO tl.g
T$#3s44Bms S0

Stﬂpl T# Oms=

For a normal step, all actions of the active step in a control cycle will be executed. Therefore, when the
transition condition is TRUE after the step is activated, the step after it is activated. The currently active step
will be executed again in the next cycle.

5.5.2.2 Action

Definition of an action

As introduced at the beginning of this section, the most basic structure of the SFC execution process is a
coordination of steps and transition conditions. Whenever a step is activated, it will be executed until the
transition condition is met before moving to the next step. The next step is activated to start a new

execution action, and it will not stop until its transition condition is met. The steps are executed in sequence,
as shown in the figure below.

202512 (V1.1) 103

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-48 SFC Execution Steps

{_‘ Initial step

Processing
completed

Drilling ——+—— Release, workpiece
unloading

«

An action is a specific operation to be performed, such as opening a valve, starting or stopping a motor, and
moving a workpiece or product. In each step, multiple actions can be executed, and the transition condition
is also an execution judgment. Therefore, when an SFC operation process structure is established, a very
important part is to determine the steps and configure their actions.

In addition, the following labels will be generated:
® \Whenever a step is created, it is automatically assigned a structure label.
® Whenever an action is created, it is automatically assigned a structure label.

® \Whenever a transition condition is created, it is automatically assigned a BOOL label. The data of these
labels can be referenced in programming.

Each step can define multiple (or single) actions which include a detailed description of the execution of this
step. The action can be written in LD, FBD, ST, SFC, or other languages. Users can edit entry and exit actions.
The elements for editing actions are listed in Table 5-16

Table 5-16 Action

Graphic . L.
Type Description
P Symbol P
Add Ent
'n &4 B Action performed before step activation
Action

Action to be executed in the next cycle after the step is executed ("step

Add Exit Action | exit”)

Once you select "Add Action", the system will automatically pop up a prompt box, as shown in the figure.
You can select the desired programming language to write action programs.

Figure 5-49 Programming Languages Supported by Step Actions

Add Entry Action *
@Acﬁon Name
Init_entry ~
Implementation language
Continuous Function Chart (CFC) w
Create a new action

202512 (V1.1) 104

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Qualifier

Qualifiers are used to configure how an action will be associated with an IEC step. They are inserted into the
qualifier field of an action element. These qualifiers are processed by the SFC Action Control function block
of the lecSfc.library and can be automatically included in a project through the SFC plug-in lecSfc.library.
SFC qualifiers are listed in Table 5-17.

Table 5-17 Qualifiers

Qualifier Name Description
N Non-stored The action is active as long as the step is active
The action is activated when the step is activated and remains
SO Set (Stored) . . . e
active even when the step is deactivated until it is reset
RO Overriding Reset |The action is deactivated
. . The action is activated when the step is activated and remains
L Time Limited
active until the step becomes inactive or the set time expires
. The delay timer starts after activation. If the step is still active after
D Time Delayed L
the delay, the action is active until the step becomes inactive
p Pulse When the step is activated/deactivated, the action is executed only

once

Stored and time |After the delay, the action is activated and remains active until it is

SD
Delayed reset

If the step is still active after a specific time delay, the action is
DS Delayed and Stored .) . S
activated and remains active until it is reset

Stored and time |The action is activated when the step is activated and remains

SL
limited active for a certain time before being reset

When the qualifier L, D, SD, DS, or SL is used, a time value is required in the format of the TIME type.
[Example 5.43] Application example of the qualifier N.
Figure 5-50 Action Qualifier N

Expression Type Value

bvarl BOOL
@ bStart BOOL TRUE
@ bvar2 BOOL TRUE

<

T#0ms
bStart

D S R -2 |

T#ims
tr;'ﬁz
Init

As described in Table 5-17, the qualifier "N" plays the following role: As long as the corresponding step is
activated, the corresponding associated variable is also activated. As shown in the figure, bVar2 is set to ON
every time Step0 is executed; otherwise, it is set to OFF. This qualifier can be used to monitor the step
execution state.

=

The qualifiers L, D, SD, DS, and SL require a time value in the format of a time constant, i.e. T#(value)(unit).
For example, the time value of 5 s is expressed as: T#5S.

Action configuration

You can find the POU of the SFC programming language in the device tree, right-click and select "Add
Object", and then select an action, as shown in Figure 5-51 a), or you can directly use the Toolbar and press
the"d& Action " button to add an action. The Toolbar is shown in Figure 5-51 b).

202512 (V1.1) 105

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-51 Add Actions 1

ToolBox
- SFC
Properties... E:ZI Step
|J Add Object v |[Bg Action.. + Transition
=) Add Folder.. Gy Method...
_'T Edit Object 5 Property... & Jump
Edit Object with... & Transition... 5] Macro
El:El Branch
a) Add actions from the device tree b) Add actions from the Toolbox

If you use the second method, select an "Action" in the Toolbar drag it to the top of the step. Then, four gray
boxes will be displayed, as shown in Figure 5-52. You can drag the action into the corresponding box. After
dragging, the corresponding settings will be added to the "Step Properties" corresponding to the step, as
shown on the right side of Figure 5-52.

The "1" in Figure 5-52 is the action of the IEC standard step. The Invtmatic Studio control platform extends
the IEC standard actions and adds three additional actions: "step entry", "step exit", and "step active". The
corresponding three extended actions are "2", "3", and "4" respectively.

Figure 5-52 Add Actions 2

Init Minimal active]
4 Maximal active]
2 1 Actions

2

Main action |:|

TI:TJL Entry action F

Init Exit action |:|

The specific step actions corresponding to "1", "2", "3", and "4" shown in Figure 5-52 are explained as

follows.

1. Stepentry

It refers to an action performed before the step is activated. The step actions will be executed as long as the
step is activated by the program before the "step active" actions. The action is associated with the step via
an entry in the "Step Entry" field of the "Step Properties". Itis indicated by an "E" in the lower left corner of

the step, as shown in Figure 5-53 a).

Figure 5-53 "Step Entry" and "Step Exit" states

Init Init

[x]

bStart IJ_FIbEtart

a) "Step Entry" state b) "Step Exit" state

2. Step exit

This action will be executed in the next cycle after the step is executed. When the step is invalid, it will be
executed once. The execution will not be in the same cycle but at the beginning of the next execution cycle.
The action is associated with the step via an exit in the "Step Exit" field of the "Step Properties". It is
indicated by an "X" in the lower right corner of the step, asshown in Figure 5-53 b).

3. Step action

202512 (V1.1) 106

INVT Medium and Large-Scale PLC Programming Manual Programming Language

When a step is activated, the step actions are executed and possible entries have been completed. After the
"Step Entry" of the step is executed, the step actions will be executed when the step is activated. However,
unlike an IEC step action, the actions will not be further executed when they are invalid and they cannot be

assigned qualifications.

The actions are associated with the step via an entry in the "Step Active" field of the "Step Properties". Itis

indicated by a small triangle in the upper right corner of the step, as shown in Figure 5-54 a).

Figure 5-54 "Step Active" State

Stel.pCI i_~l-| N | bVarz | |
run_sin te [|H test3
R testd
QEI;J::
Init
a) b)
PROGRAM PLC_PRG
VAR
b1,b2,b3: BOOL;
X1, X2: BOOL;
Timel:TIME:=T#5S;
END_VAR
Figure 5-55 "Step Activated" State
Init
%:Xl
Stepl D Ti. |bl
H b2

Jtm
Stepd

As shown in the figure, when the transition condition variable X1 is TRUE, the program will execute the step
Step0. At the same time, the corresponding step activation state variable b2 is TRUE. Since the qualifier
corresponding to bl is D, and the specific time is defined in the declaration area of the program as the

variable Time, namely 5s, after Step0 is executed for 5s, the b1 variable is set from FALSE to TRUE.
4. Step association action

Step association actions include Insert Action Association and Insert Action Association After, as shown in
Table 5-19.When the current step is used as an IEC standard step, first click on the step, such as Step0, and
then select "SFC" — "Insert Action Association" to associate the IEC step action with the step. A step can be
associated with one or more actions.The position of the new action is determined by the current cursor
position and the instruction used. The action must be available in the project and must be inserted with a

unique action name, as shown in Figure 5-56.

202512 (V1.1) 107

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Table 5-18 Step Association Actions

Type Graphic Description
P Symbol 2
Insert Action . . .
L =t Associate an action with the step

Association
Insert Action . . . _—

. =] Associate a further action with step after an existing one.

Association After

Figure 5-56 Add an Associated Action to the IEC Standard Step

L
Stepl *F| H bEvVar2 I

Init
The IEC standard step is executed at least twice: the first time when it is activated and the second time in the

next cycle when it is deactivated.

Since multiple actions can be assigned to a step, these actions are executed in sequence from top to bottom.
For example, the action Action_AS1 is associated with the step AS1, and a step action and an IEC action with
the qualifier N are added respectively. In both cases, assuming that the transition conditions have been met,
it takes 2 cycles to reach the initial step again. Assuming that a variable iCounter is incremented in
Action_AS1, after the step Init is activated again, the value of iCounter in the step action example is 1. In

contrast, the value of iCounter for the IEC action with the qualifier N is 2.
5.5.2.3 Transition

The switching between steps is simply called transition. The value of a transition condition must be TRUE or
FALSE, so it can be a Boolean variable, Boolean address, or Boolean constant. A step transition can only be
performed if the step transition condition is TRUE. That is, after the action of the previous step is executed, if
there is an exit action, the exit action is executed once; if there is an entry action in the next step, the entry
action of the next step is executed once, and then all the actions of the active step are executed according to

the control cycle.

The program organization unit written in a sequential function chart contains a series of steps, which are
connected via directed links (transition conditions). The operations associated with step transitionin a

sequential function chart are shown in Table 5-19.

Table 5-19 Transition Operations in the SFC

Graphic .
Type Description
P Symbol P
Insert . ..
. ot Insert a transition condition before a step
Step-Transition
Insert
Step-Transition 7l Insert a transition condition after a step
After

Generally speaking, there are different transition modes. The following are several transition modes that are
commonly used in sequential function charts. They will be introduced one by one below.

202512 (V1.1) 108

INVT Medium and Large-Scale PLC Programming Manual

Programming Language

1. Serial transition

Serial transition refers to transition to the next to-be-executed step in a serial connection when the

transition condition is met.

Figure 5-57 Serial Branch Transition

Step n (action output [A])

| Transition
condition b

Step n+1(action output [B])

As shown in the figure, when the action output [A] of the step n is executed, if the transition condition b is
met, the action output [A] is not executed and the action output [B] of the step (n+1) is executed.

2. Alternative transition

Alternative transition refers to executing only the step whose transition condition is met first among

multiple steps connected in parallel.

A. Alternative branch transition

Figure 5-58 Alternative Branch Transition

Stepn
(action output [A])

—— Transition condition b

Step (n+1)
(action output [B])

—— Transition condition ¢

Step (n+2)
(action output [C])

® When the action output [A] of the step n is executed, the step (step (n+1) or step (n+2)) whose transition
condition is met first among transition conditions b or c is selected, and the action output ([B] or [C]) of

that step is executed.

® When the transition conditions are met at the same time, the transition condition on the left takes
precedence. The action output [A] of the step n is not executed.

® Once selected, the steps in the selected sequence are executed sequentially until a merge is performed.

202512 (V1.1)

109

INVT Medium and Large-Scale PLC Programming Manual Programming Language

B. Alternative merge transition

Figure 5-59 Alternative Merge Transition

Step (n+1)

Step n (action output [B])

(action output [A])

—t+ Transition condition ¢
—— Transition condition b

Step (n+2)
(action output [C])

If the transition condition (b or ¢) of the execution sequence in the branch is met, the action output ([A] or
[B]) of the step is not executed, and the action output [C] of the step (n+2) is executed.

3. Parallel transition

Parallel transition refers to executing multiple steps connected in parallel at the same time when the
transition condition is met.

A. Parallel branch transition

Figure 5-60 Parallel Branch Transition

Stepn
(action output [A])

—— Transition condition b

Step (n+1) Step (n+3)
(action output [B]) (action output [D])
— Transition condition c ~| Transition condition d
Step (n+2) Step (n+4)
(action output [C]) (action output [E])

® When the action output [A] of the step n is executed, if the transition condition b is met, the action
output [B] of the step (n+1) and the action output [D] of the step (n+3) are executed simultaneously.

® When the transition condition c is met, the program transits to the step (n+2), and when the transition
condition d is met, the program transits to the step (n+4).

202512 (V1.1) 110

INVT Medium and Large-Scale PLC Programming Manual Programming Language

B. Parallel merge transition

Figure 5-61 Parallel Merge Transition 1

Step n Step (n+1)
(action output [A]) (action output [B])

—[Transition condition b — Transition condition ¢

Waiting step Waiting step

—— Transition condition d

Step (n+2)
(action output [C])

® When the action output [A] of the step n and the action output [B] of the step (n+1) are executed, if the
transition conditions b and c are met, the action output [A] of the step n and the action output [B] of
the step (n+1) are not executed and the program transits to the waiting step.

® The waiting step is used to synchronize the steps executed in parallel. By transiting all the steps
executed in parallel to the waiting step, the transition condition d is checked. If the transition condition
d is met, the action output [C] of the step (n+2) is executed.

® The waiting step is regarded as a virtual step, and it does not matter even if there is no action output
ladder diagram.

5.5.2.4 Jump

A jump refers to transition to a specified step in the same POU when a transition condition is met. It is

indicated by a vertical line and horizontal arrow and the jump target name, as shown in . 5+ ep0-

A jump defines the step to be executed when the subsequent transition is TRUE. According to the program
execution sequence, the program cannot be cross-executed or executed upward, so a jump is needed. A
jump can only be used at the end of a branch. When the last transition is selected, it can be inserted through
the "Insert Jump" instruction, and the executable operations of the jump are shown in the figure below.

Table 5-20 Jump Elements in an SFC

Type Graphic Description
B Symbol s
Insert Jump et Add a jump before a step.
Insert Jum
P et Add a jump after a step.
After

The jump target can be given by an associated text string, which can be edited inline. It can be a step name

or a label for a parallel branch, as shown in the figure below.

Figure 5-62 Parallel Merge Transition 2

Stepn Stepm
(action output [A]) (action output [B])

T~ Transition condition b |
L

202512 (V1.1) 111

INVT Medium and Large-Scale PLC Programming Manual Programming Language

When the action output [A] of the step n is executed, if the transition condition b is met, the action output [A]
is not executed and the action output [B] of the step m is executed.

When a jump is executed within a parallel transition, it can only be executed in each vertical direction of the
branch. For example, a jump in the vertical direction from the branch to the merge, as shown in Figure 5-63.

Figure 5-63 Parallel Merge Transition 3

B

_‘\

The jump programs shown in Figure 5-64 cannot be created: jumps to other vertical ladder diagrams within
a branch, jumps to the outside of a parallel branch, and jumps from the outside of a parallel branch to the

inside of the parallel branch. For example, a jump to the outside of a parallel branch (It cannot be specified).

Figure 5-64 Parallel Merge Transition 4

Parallel

é transition

Jum

transition not
executed

For example, when the transition condition shown in Figure 5-65 is met, a jump to the current step should

not be specified. If a jump to the current step is specified, it will not operate normally.

202512 (V1.1) 112

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-65 Parallel Merge Transition 5

[J n

Jump creation
Find "Jump" in the Toolbox to insert a jump, as shown in Figure 5-66 a). Then, you only need to enter the
jump target name, as shown in Figure 5-66 b). The jump target is Step0, so you just need to write Step0.

Figure 5-66 Jump Creation

Init
= SFC
0o Step
+ Transition
& Action ‘J‘:'T-?'—'E
g Jump Stepd — D t#. |bTest
[Macro N bTestl
El Branch
tfl’l‘le
Step0
a) Add a jump b) Jump target name

Figure 5-67 shows a typical application of the jump instruction. When the jump instruction t42 condition is
met, it will automatically jump to stepl according to the program instruction and re-enter the program loop.

Figure 5-67 Typical Application of the SFC Jump Instruction

—|I-I |actl

stepl

/= td ér—l tdl

Step3?

tdz

i atepl

5.5.2.5 Macro
Just like the definition of a macro in other software, the main function of a macro in SFC programs is to
avoid a lot of repetitive work. You only need to define a macro in advance and then call it in the program.
Common operations on a macro are listed in Table 5-21.
Table 5-21 Macro Elements in an SFC

Type g;::::l Description
Insert Macro Et Insert a macro
Add Macro Bl Add a macro
Enter Macro [Open the Macro Editor view
Exit Macro €] Return to the SFC standard view

202512 (V1.1) 113

INVT Medium and Large-Scale PLC Programming Manual

Programming Language

Implicit variables

Each SFC step and IEC action provide implicitly generated variables for runtime monitoring of the step and
IEC action. It is also possible to define the variables to monitor and control SFC execution (timeout, restart,
spike mode). The types of these implicit variables are defined in the library lecSFC.library.

This library is automatically added when an SFC object is added.

In the SFC programming language, some implicit variables can be called externally. In normal conditions,
these variables are not displayed. To use these variables, you need to set the SFC properties. Right-click the
"Properties" of the POU of the SFC language, click the "SFC Settings" option in the pop-up Properties dialog
box, and check the variables you need to use, as shown in Figure 5-68.

Figure 5-68 Implicit Properties of an SFC

Devices ~ o X i) Library Manag

Properties - POU_3 [Device: PLC Logic: Application x
) UntitkedT L P g1 aep
= -
= 2 VAR
i DDEV'CE (ma7s3) 3 END var| Common |SFC Settings Buld Access Control Bitmap
Auto scan -
Q Fault diagnosis summary Flags Bui\\?
= Eﬂ PLC Logic
= 12 Application Use Varisble Declare Description &
@ cam O sFcnit All steps and actions are reset, Thi
GEL [0 sFCReset All steps and ac
Li M .
I O srceror Gets "TRUE, if a tme d
POU_3 (PRG,
, = 1 [0 sFCEnableLimit Enable time check on steps
=i Task Configuration ‘Xg Cut = =
& EtherCaT Task % [0 srFCErrorStep Contains the name of the step thg|
erCAT Tasl B o
g MairTask 24 O sFcErorPOU Contains the name of the POU thg|
= lairTas .
= @ o 3 Paste D SFCQuitError Execution is stopped. SFCError is |
& Trace - W Delete [0 sFcPause Execution is stopped. SFCError is |
SFCTrans o i JE', if a transition switd
T Persistentyars Browse s O FCTrans Gets TRUE, if a transition switche|
D Varisble usage e . [0 | sFccurrentStep Contains the name of the active s
ﬂj TM75x-HSIO (TM75%-HSIO) J D SFCTip Switches the next transition on a r
ﬂj ExtCard (ScanModule) 2 Properties... I D SFCTipMode If TRUE', transitions can only be s
= ﬂj EtherCAT Master_SoftMotion (EtherCAT tg Add Object R [0 sFCErroranalyzation Contains the possible variables the ¥
B < >
@ ;NV'LDA[ZUEL)FGG (DA200-M EtherCA =) AddFolder..
Axis (Axis 5
Edit Obiect Use Defaults
"3 SoftiMotion General Axis Pool 4 Tt Hbje
Edit Object with...
Show Embedded Objects
H] Visual Element Repository

In order to access these flags and make them work, they must be declared and activated. You can set them
in the "SFC Settings" dialog box. It is a child dialog box of the "Object Properties" dialog box. If you want to
use this variable, you must check the "Enable" box in front of the variable. The specific usage of the variable
is also explained in its description.

5.6 Continuous Function Chart (CFC)

5.6.1 Continuous Function Chart Programming Language Structure

5.6.1.1 Introduction

Continuous Function Chart (CFC) is actually another form of FBD. In the whole program, the sequence of
operation blocks can be customized to facilitate the implementation of process operations. It is used to
describe the top-layer structure of resources and the allocation of tasks to programs and function blocks.

The main difference between a continuous function chart and a function block chart lies in resource and
task allocation. Each function is described by a task name, as shown in the figure below. If a function block
within a program is executed under the same task as its parent program, the task association is implicit. The
Continuous Function Chart (CFC) is shown in Figure 5-69.

Figure 5-69 Continuous Function Chart (CFC)
TON_O — TOF D -
TON (c] TOF a
—4IM 1M

Q a2
tH2s PT ETH t#ls PT ETH

202512 (V1.1)

114

INVT Medium and Large-Scale PLC Programming Manual Programming Language

5.6.1.2 Execution Sequence

The number in the upper right corner of the element in the CFC language shows the execution sequence of
the elementin the CFC in online mode. The execution process starts from the element numbered 0. In each
PLC operation cycle, the element numbered 0 is always the first to be executed. When the element is moved
manually, its number remains the same. When a new element is added, the system automatically assigns a
number according to the topological sequence (from left to right, from top to bottom), as indicated by the
red part in Figure 5-70.

Figure 5-70 Sequence Number in the CFC Programming Language

ADDy

The numbers in the upper right corner of the operation block, output, jump, return, and label elements in
the CFC language show the execution sequence of the elements in CFC in online mode. The execution
process starts from the element numbered 0. Considering that the execution sequence will affect the results,
it can be changed under certain circumstances. The execution sequence of the element can be changed by
using the sub-menu instructions in the "Execution Sequence" under the "CFC" menu.

The execution sequence includes the following instructions: Send to Front, Send to Back, Move Up, Move
Down, Set Execution Sequence, Order by Data Flow, Order by Topology, as shown in Figure 5-71.

Select All
Browse >

2} Input Assistant...

v EN/ENO
Set/Reset »

[Execution Order » I“b Send to Front |[
Pins » |44 Send to Back
Routing » |y Move Up
Group » | L4 Move Down

Set Execution Order...
Order by Data Flow
Order by Topology

1. Send to Front

Move the selected element to the beginning of the execution sequence. If multiple elements are selected to
execute this instruction, the original internal sequence of selected elements remains unchanged, and the
internal sequence of unselected elements also remains unchanged.

2. Send to Back

Move all selected elements to the end of the execution sequence. The internal sequence of selected
elements remains unchanged, and the internal sequence of unselected elements also remains unchanged.
For specific operations, please refer to the above-mentioned "Send to Front" function.

3. Move Up

Move all selected elements (except for the element which has been already at the beginning of the execution
sequence) one place forward in the execution sequence. For example, if you select the element No. 3in
Figure 7 and execute the "Move Up" instruction, the result is that the execution sequence of elements No. 2
and No. 3 is swapped, and the rest elements remain unchanged.

4. Move Down

Move all selected elements (except for the element which has been already at the end of the execution
sequence) one place backwards in the execution sequence. For specific operations, please refer to
above-mentioned "Move Up" function.

202512 (V1.1) 115

INVT Medium and Large-Scale PLC Programming Manual Programming Language

5. Set Execution Sequence

This instruction can renumber the selected elements and adjust their execution sequence. Once the "Set
Execution Sequence" instruction is executed, the "Set Execution Sequence" dialog box will be opened. The
current element number is displayed in the "Current Execution Sequence" field. You can enter the desired
element number in the "New Execution Sequence" field. The possible values are displayed in brackets, as
shown in the figure below.

Set Execution Order X

Current execution order l:l
New execution arder (0-2) D

6. Order by Data Flow

The "Order By Data Flow" instruction means the execution sequence is determined by the data flow of the
elements rather than by their positions (topology). Once the "Order By Data Flow" instruction is executed,
the CFC editor will perform the following operations.

Step1l Order the elements topographically.
Step2 Create a new sequential processing list.

Step3 Based on the known values of the inputs, calculate which of the elements not yet numbered can be
processed next.

The advantage of the "Order By Data Flow" instruction is that after an algorithm is executed, the algorithm
block connected to its output pin will be executed immediately, which is not always so in the case of "Order
by Topology". The execution result of the "Order by Topology" instruction may be different from that of the
"Order By Data Flow" instruction.

[Example 5.44] The figures below show how to view the results using the "Order By Data Flow" instruction
after the element labels are disrupted.

Figure 5-72 View Before Using the "Order By Data Flow" Instruction

ADD -
nVar - HUL:[:‘
I'I"'.-"E r2 — : _l_

| mvard |— —

n\ard |—

After selecting all elements and executing the "Order By Data Flow" instruction, the result is as shown in
Figure 5-73.

Figure 5-73 View After Using the "Order By Data Flow" Instruction

n'arl — M [

-

nvar2 - - _l_ SUB '“—

| mvard |— —
n'ard |—

The element numbers are re-arranged in the order of data flow, and the execution sequence of the functions
MUL and SUB has also changed.

7. Order by Topology

The "Order by Topology" instruction means that the execution sequence is determined by the topological

202512 (V1.1) 116

INVT Medium and Large-Scale PLC Programming Manual Programming Language

order of the elements rather than by the data flow. Once the "Order by Topology" instruction is executed,
the elements are executed from left to right and from top to bottom. The element numbers, indicating the
position of an element within the execution sequence, increase from left to right and from top to bottom. In
this case, the position of the connecting line is not relevant, only the location of the element is important.
[Example 5.45] Figure 5-74 shows disrupted element labels. Use the "Order by Topology" instruction to view
the results.

Figure 5-74 View Before Using the "Order by Topology" Instruction

ADD [:
nWarl MUL:
n'ar? — : _|_

| n\ar3 |— -
n'ard I—
Select the SUB function, right-click and execute the "Order by Topology" instruction. The result is shown in
Figure 5-75.

Figure 5-75 View After Using the "Order by Topology" Instruction

ADD - .
nVarT HUL:[:‘

n\ar2 — — _l_
| n\ar3 |— —

n'ard |—
The execution sequence follows the rule below: the elements are executed from left to right and from top to
bottom, and the element numbers, indicating the position of an element within the execution sequence,
increase from left to right and from top to bottom.

5.6.2 Link Element

The CFC elements include Block, Input, Output, Jump, Label, Return, and Comment.
Figure 5-76 CFC Toolbox

ToolBox

= CFC
||; Pointer
. Control Point
= Input

= Qutput

IF Box

= Jump

= Label

= Return

I Composer

Ik Selector

= Comment

== Connection Mark - Source
= Connection Mark - Sink

3°F Input Fin
= Output Pin

5.6.2.1 Pointer

The pointer is at the top of the Toolbox list by default. As long as this entry is selected, the cursor has the
shape of an arrow and you can select elements in the editor window for positioning and editing.

202512 (V1.1) 117

INVT Medium and Large-Scale PLC Programming Manual Programming Language

5.6.2.2 Input and Output
Input
You can insert the "=" symbol in the CFC Toolbox list to add the Input function. The graphic after insertion
iS n '?'?'} II‘
You can select the text offered by "???" and replace it with a variable or constant. You can also use the Input
Assistant to select a valid identifier.
Output
You can insert the "=" symbol in the CFC Toolbox list to add the Output function. The graphic after

insertionis" ".

You can select the text offered by "???" and replace it with a variable or constant. You can also use the Input

Assistant to select a valid identifier.

5.6.2.3 Block

You can insert the "IF" symbol in the CFC Toolbox list to add the Block function. The graphic after insertion

77
e n
IS "

You can use a block to represent operators, functions, function blocks, and programs. You can select the text
offered by "???" and replace it with an operator, function, function block, or program name after adding the
Block function. Alternatively, you can use the Input Assistant to select one of the available objects.

[Example 5.46] Call the timer function block in the CFC programming language through the Block function.

Create a new POU, use the CFC programming language to add "Block", click "?2??", and enter "F2" to pop up

the Input Assistant. Find and select the desired timer function block, as shown in Figure 5-77.

Figure 5-77 CFC Input Assistant Tool

TextSearch Categories

Functionblocks & Name Type

Module Calls *-{} sM3_Basic
Keywords #-{} sma_cne
Conversion Operators #-{} SM3_Drive_ETC

#- {} SM3_Drive_ETC_D5402_CydlicSync
#-{} sM3_Math
#- {} sM3_Robotis
= {} standard
#-I2 Bistable Function Blocks
+-I2 counter
+ -1 Miscellanzous
=12 Timer
TOF
TON
™

+- [Trigger v

Structured view

Insert with arguments Insert with namespace prefix

Documentation

oK Cancel

If you need to call a function block in the CFC programming language, you can directly enter the instance
name of the function block and assign values or variables separated with commas to each parameter of the
function block in the subsequent brackets. The function block call ends with a semicolon.

202512 (V1.1) 118

INVT Medium and Large-Scale PLC Programming Manual Programming Language

For example, call the TON timer function block in the CFC programming language. Assuming its instance
name is TON1, the specific implementation is shown in Figure 5-78.

Figure 5-78 Function Block Call in the CFC Programming Language

1 PROGRAM EQTT -
-z VAR 0
3 TON_0: TON; =

4 TOF_0: TOF:
s END VAR
4 - 1l 3
.
"l
TON_D B TOF O 0]
TON - TOF
—IN e! IN el [Hm1
s | PT ETH tils PT ET[-
k| -+|Q | 100% B

If you insert a function block, another "???" will be displayed above the block. You need to replace "???" with
the name of the function block instance. In this example, the instance names are TON_0 and TOF_0.

If you replace an existing block with another (by modifying the entered name) and the new one has a
different minimum or maximum number of input or output pins, the pins will be adapted correspondingly. If
pins are to be removed, the lowest one will be removed first.

5.6.2.4 Jump and Label
The jump of a CFC program consists of two parts: jump instruction and label, which will be explained in
detail below.
Jump
You can insert the "#==" symbol in the CFC Toolbox list to add the Jump function. The graphic after insertion
You can use the jump element to indicate at which position the execution of the program should continue.

This position is defined by a "label" (see below). After inserting a new jump, you need to replace the text
offered by "?7?" with the label name.

Label
You can insert the "=" symbol in the CFC Toolbox list to add the Label function. The graphic after insertion

A "label" marks the position to which the program can jump. In online mode, if a jump is activated, you can
enter the label corresponding to the jump.

A label name is not a variable, so it does not need to be defined in the program declaration area. [Example
5.49] illustrates how to correctly use the jump instruction and label.

[Example 5.47] Examples of CFC jump instruction and label functions.

202512 (V1.1) 119

INVT Medium and Large-Scale PLC Programming Manual Programming Language

Figure 5-79 Example of CFC Jump Function
A

GT
ninput !
[0}

BETI

1
i

100

oo

nCounter

After the program starts, when the input value ninput is greater than 10 and less than 100, the program
executes the jump function and goes to the label Labell. Since the execution sequence number of Labell is
0, the execution sequence in this program is: 4—0—>1—2—>3—4, and performed in a loop.

Since the program has an auto-increment function, but the execution sequence numbers are 5 and 6, when
the jump instruction is executed, the auto-increment function will not be executed by the program;
otherwise, nCounter will be auto-incremented.

5.6.2.5 Return

You can insert the "#" symbol in the CFC Toolbox list to add the Return function. The graphic after
insertion is "".

You need to pay special attention to the execution sequence number. When the condition is met, the
program will be returned directly.

In online mode, a return element with the RETURN name is automatically inserted in the first column and
after the last element in the editor. In a branch, it automatically jumps to the place before execution leaves
the POU.

The RETURN instruction is used to exit a program organization unit (POU).

Note: In online mode, a RETURN element is automatically inserted after the last element in the editor. In
single-step debugging, it will automatically jump to the RETURN before leaving the POU.

5.6.2.6 Composer

You can use a composer to handle an input of a structure type operation block. The composer will display

the structure components and thus make them accessible in the CFC for the programmer.

You can insert the "3 " symbol in the CFC Toolbox list to add the Composer function. The graphic after

insertion is " -“ "

The usage method of the composer is as follows: first add a composer to the editor, replace "???" with the
name of the concerned structure, and then connect the output pin of the composer and the input pin of the
operation block.

[Example 5.48] Process a function block instance fubblo1 with the CFC program CFC_PROG, which has an

input variable struvar of structure type. By using the composer element, the structure type variable can be
accessed:

Definition of the structure strul:

TYPE strul:
STRUCT

202512 (V1.1) 120

INVT Medium and Large-Scale PLC Programming Manual

Programming Language

ivar:INT;
strvar:STRING:='hallo';
END_STRUCT

END_TYPE

Declaration and implementation of the function block fublo1:

FUNCTION_BLOCK fublol
VAR_INPUT
struvar:STRU1L,;
END_VAR
VAR_OUTPUT
fbout_i:INT;
fbout_str:STRING;
END_VAR
VAR
fbvar:STRING:='world';
END_VAR
fbout_i:=struvar.ivar+2;
fbout_str:=CONCAT (struvar.strvar,fbvar);

Declaration and implementation of the program CFC_PROG:

PROGRAM PLC_PRG
VAR

intvar: INT; stringvar: STRING;

fbinst: fublol;
ergl: INT;
erg2: STRING;

In the program, as shown in Figure 5-80, '1' is a composer, and '2' is strul containing a structure input

variable. The operation of the structure type input block is implemented.

END_VAR

Figure 5-80 CFC Composer Example

intwar
stringvar

——ivar

—strvar

siruﬁ»strwar

fbinst o
fublol —
fhout_i

fbout_str

2

ergl

ergl =

\
@

\
2,

202512 (V1.1)

121

INVT Medium and Large-Scale PLC Programming Manual

Programming Language

Figure 5-81 Operation Result of the CFC Composer Example

@ intvar INT 1
@ stringvar STRING why' =
+ d@ fhinst fublo1
@ ergl INT 3
@ erg2 STRING ‘whywarld' i
i 0 3
S
fhinst '
]
W= 0 fublol ! B e e £ R
intvar =—rear Istru strunvar fbout_i — eml — —
stringvar strear fhout_str —erge E -

5.6.2.7 Selector

You can use a selector to handle an output of a structure type operation block. The selector will display the
structure components and thus make them accessible in the CFC for the programmer.

You can insert the "TE" symbol in the CFC Toolbox list to add the Selector function. The graphic after

insertion is "".

The usage method of the selector is as follows: first add a selector to the editor, replace "???" with the name

of the concerned structure, and then connect the output pin of the selector and the output pin of the

operation block.

[Example 5.49] Process a function block instance fubblo2 with the CFC program CFC_PROG, which has an

output variable fbout of strul structure type. By using the selector element, the structure type variable can

be accessed:

Definition of the structure strul:
TYPE strul:
STRUCT
ivar:INT;
strvar:STRING:="hallo";
END_STRUCT
END_TYPE

Declaration and implementation of the function block fublo1:

FUNCTION_BLOCK fublo2
VAR_INPUT

fbin : INT;
fbin2:STRING;
END_VAR
VAR_OUTPUT

fbout : strul;
END_VAR

VAR

fbvar:INT:=2;
fbin3:STRING:="Hallo';
END_VAR

Declaration and implementation of the program PLC_PRG_1:

202512 (V1.1)

122

INVT Medium and Large-Scale PLC Programming Manual Programming Language

PROGRAM PLC_PRG_1 VAR

intvar: INT;

stringvar: STRING;

fbinst: fublo2;

ergl: INT;

erg2: STRING;

fbinst2: fublo2;

END_VAR
In the program, as shown in Figure 5-82, '1'is a function block with an output variable fbout of strul
structure type, and '2' is a selector.

Figure 5-82 CFC Selector Example

fhinst
=strul Ivar ergl
'CoDeSys" strvar ergd

\
2,

Figure 5-83 Operation Result of the CFC Selector Example

@ intvar INT 0
@ stringvar STRING "
+ & fhinst fublo2
@ ergl INT 102
@ erg? STRING 'CoDeSysHallo'
+ & fhinst2 fublo2
A
)
strul ivar ergl t
o oEe 2
{ strvar erg?

5.6.2.8 Comment

You can insert the "=" symbol in the CFC Toolbox list to add the Comment function.

The graphic after insertionis | <Enfer your comment here..> |",

You can use this element to add any comments to the chart in the CFC program. Select the placeholder text
and replace it with any desired text. To obtain a new line within the comment, press <ctrl>+<enter>. The CFC
Comment view is as shown below.

Function] =
Edlit by ABC comment
MC_Powerl
MC_Power
Bixis N Status —
—Enable bRegulatorReal State —
—bRegulatorOn bOriveStartResl State -
—bDnveStart Busy—
Errorp—
ErrarlD—

202512 (V1.1) 123

INVT Medium and Large-Scale PLC Programming Manual Programming Language

5.6.2.9 Input and Output Pins

Depending on the block type, you can add an input pin (or output pin). For this purpose, select "Input Pin"
(or "Output Pin") in the Toolbox list, then drag and drop it onto the block in the CFC editor. At this time, an
input pin (or output pin) will be added to the block.

5.6.3 CFC Configuration

1. Addaconnection in the CFC program

When adding a connection, first activate the pin of the connection block. After activation, you will see a red
filled square at the pin. Select the square with the left mouse button, as indicated by '1' in Figure 5-84, hold
down the mouse and draw a line to the other block to be connected, as indicated by '2'in Figure 5-84, and

then release the mouse. At this time, the connection between the two blocks is completed.

Figure 5-84 Add a Connection in the CFC Program

ADD
nVarl MUL:
/ = |
|

nVard |— —
CTu_D [—]4 nVard I—
CTu
—{Ccu Q
—RESET CW
= e

2. Delete a connection in the CFC program

When deleting a connection, first activate the pin of the connection block. After activation, you will see a red
filled square at the pin. Right-click the square and select "Delete" in the menu bar that appears, as indicated
by the framed partin Figure 5-85. You can also select the " 3 " button in the shortcut menu bar to delete
the connecting line in the program.

Figure 5-85 Delete a Connection in the CFC Program

MC_Powerl
MC_Power
Dotz iz Status —
—Enzble bRegulatorReal State -
—{bRegulatorOn bDriveStartReal State @
—{bDriveStart BusyH g Cut
ErrorH Copy
ErrorlDH Paste
|)(Delete
Select All
Input Assistant...

202512 (V1.1) 124

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

6 Basic Instructions

6.1 Comparison Instructions

6.1.1 Greater Than (GT)

Evaluate two input values: When the first input value is greater than the second input value, TRUE is output;
otherwise, FALSE is output.

Example in FBD:

GT
EN -

>

Note: When the data types of the two input variables are inconsistent, a compilation error will be
reported.

6.1.2 Less Than (LT)

Evaluate two input values: When the first input value is less than the second input value, TRUE will be output;
otherwise, FALSE will be output.

Example in FBD:

LT
— EN -

=

Note: When the data types of the two input variables are inconsistent, a compilation error will be
reported.

6.1.3 Greater Than Or Equal To (GE)

Evaluate two input values: When the first input value is less than the second input value, TRUE will be output;
otherwise, FALSE will be output.

Example in FBD:
GE

Note: When the data types of the two input variables are inconsistent, a compilation error will be
reported.

202512 (V1.1) 125

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

6.1.4 Less Than Or Equal To (LE)

Evaluate two input values: When the first input value is less than or equal to the second input value, TRUE is
output; otherwise, FALSE is output.

Example in FBD:

LE

4 EN L.
. -

Note: When the data types of the two input variables are inconsistent, a compilation error will be
reported.

6.1.5 Equal To (EQ)

Evaluate two input values: When the first input value is equal to the second input value, TRUE is output;
otherwise, FALSE is output.

Example in FBD:

Note: When the data types of the two input variables are inconsistent, a compilation error will be
reported.

6.1.6 Not Equal To (NE)

Evaluate two input values: When the first input value is not equal to the second input value, TRUE is output;
otherwise, FALSE is output.

Example in FBD:

NE

o L

Note: When the data types of the two input variables are inconsistent, a compilation error will be
reported.

202512 (V1.1) 126

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

6.2 Selection Instructions

6.2.1 Binary Selection (SEL)

When G=FLASE, INO is output; when G=TRUE, IN1 is output.
Example in FBD:

SEL

{EN ENO
{G s
1INO
1IN

Note: When G is TRUE, Invtmatic Studio does not evaluate the expression before INO. When G is FALSE,
Invtmatic Studio does not evaluate the expression before IN1.

6.2.2 Multiplexer (MUX)

Select the k-th value from a group of values. The first value is K=0. If K is greater than the other input values,
Invtmatic Studio transmits the last value

(INn).

Example in FBD:

MUX
{EN ENO

6.2.3 Maximum (MAX)

Take the maximum of the two input values and output the maximum value from the right side.

Example in FBD:

MAX
{1EN ENO

T

Device Application.POU_2

Expression Type Value F
P WP

@ i_out INT g

& i_varl INT 6

@ i_var2 INT g

@ i_var3 INT 3

1|+ iout[3 |:=MAX(i_vard[3 | MAX(i_varl[& i _ver2[s |)):|5ET0mn

202512 (V1.1) 127

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

6.2.4 Minimum (MIN)

Take the minimum of the two input values and output the minimum value from the right side.

Program example:

MIN
{1EN ENO¢

6.2.5 Limit (LIMIT)

MX is the upper and MN the lower limit for the result. If the value IN exceeds the upper limit MX, LIMIT will
return MX; if IN falls below the lower limit MN, the result will be MN. When the value IN is within the range of
MN and MX, the result is the input value of IN.

Example in FBD:

LIMIT

{EN ENO
{4 MN L
1IN
4 MX

T

Note: The MX and MN data types must be the same.

6.3 Counter Instructions

Note: When using counter function block instructions such as CTU, CTD, and CTUD, you need to add the
Standard library in the Library Manager of Invtmatic Studio platform.

6.3.1 Counter Up (CTU)

This counter function block counts up.
Input:
CU:BOOL; if arising edge is detected, CV is increased by 1
RESET: BOOL; if TRUE, CVisresetto 0
PV:WORD; the upper limit of CV count
Output:
Q:BOOL; TRUE if CV=PV
CV:WORD; continuously increased by 1 until CV

If the value of RESET is TRUE, CV is reset to 0. If a rising edge is detected on CU from FALSE to TRUE, CV is
increased by 1. If CV is greater than or equal to PV, Q is TRUE.

Declaration example:
CTUInst:CTU;

Example in FBD:

CTUinst
CTU
WarBOOL1—|CU Q——————— ¥arEBOOL3

VarBoolZ—|RESET CV[~ VarWORDz
WarWORD1 —| BV

202512 (V1.1) 128

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

Example in ST:
CTUInst(CU:=VarBOOL1,RESET:=VarBOOL2,PV:=VarWORD1);
VarBOOL3:=CTUInst.Q;

VarWORD2:=CTUInst.CV;

6.3.2 Counter Down (CTD)

This counter function block counts down.
Input:
CD:BOOL; if a rising edge is detected, CV is decreased by 1
LOAD:BOOL; if TRUE, CV is set to PV
PV:WORD; the initial value when CV starts to decrease
Output:
Q:BOOL; TRUE if CV=0
CV:WORD; continuously decreased by 1 until PV=0

If the value of LOAD is TRUE, CV is initialized to PV. If a rising edge is detected on CD from FALSE to TRUE and
CVis greater than 0, CV is decreased by 1 (that is, CV cannot be less than 0). If CV is equal to 0, Q is TRUE.

Declaration example:
CTDInst:CTD;

Example in FBD:

CThin=st
CID
VarBOOL1—|CD QA VarBOOL3

VarBoolz— LOAD CWj~ VarWORDZ
VarWORD1 — PV

Example in ST:
CTDInst(CD:=VarBOOL1,LOAD:=VarBOOL2,PV:=VarWORD1);
VarBOOL3:=CTDInst.Q;

VarWORD2:=CTDInst.CV;

6.3.3 Counter Up/Down (CTUD)

This counter function block counts up/down.
Input:
CU:BOOL; if a rising edge is detected, CV is increased by 1
CD:BOOL; if a rising edge is detected, CV is decreased by 1
RESET: BOOL; if TRUE, CVisresetto 0
LOAD:BOOL; if TRUE, CV is set to PV
PV:WORD; the upper limit value when CV starts to increase, or the initial value when CV decreases
Output:
QU:BOOL; TRUE if CV=PV
QD: BOOL; TRUE if CV=0
CV:WORD; continuously decreased by 1 until PV=0

If arising edge is detected on CU from FALSE to TRUE, CV is increased by 1. If a rising edge is detected on CD
from FALSE to TRUE and CV is greater than 0, CV is decreased by 1. If CV is greater than or equal to PV, QU is
TRUE. If CVis equal to 0, QD is TRUE.

202512 (V1.1) 129

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

Declaration example:
CTUDInst:CUTD;
Example in FBD:

CTUDin=t
CTUD
VarBOOL1—CU QU VacBO0LS
VarB0OLZ=——(CD QD= VarBDOLG

VarB00L3— RESET C¥[~ VarWORD:z
¥arB00L4—) LOAD
VacWORD1 — PV

Examplein ST:
CTUDInst(CU:=VarBOOL1,CD:=VarBOOL2,RESET:=VarBOOL3,LOAD:=VarBOOL4,PV:=VarWORD1);
VarBOOL5:=CTUDInst.QU;

VarBOOL6:=CTUDInst.QD;
VarWORD2:=CTUDInst.CV;

6.4 Timer Instructions

Note: When using timer function block instructions such as TP, TON, TOF, and RT, you need to add the
Standard library in the Library Manager of Invtmatic Studio platform.

6.4.1 Pulse Timer (TP)

This timer function block creates a pulse.

Input:
IN:BOOL; if arising edge is detected, ET starts timing
PT:TIME; the upper limit value of ET timing

Output:
Q:BOOL; when ET is timing, its value is TRUE
ET:TIME; the current state of time

If the value IN is FALSE, Q is FALSE and ET=0. If the value IN is TRUE, the time in ET starts counting in
milliseconds until ET=PT. After ET=PT, it will remain constant. If INis TRUE and ET is less than or equal to PT,
Q is TRUE; otherwise, Q is FALSE.

During the time period defined by PT, Q is TRUE. The time sequence diagram of TP is as follows:

t0 tO+PT t2 t2+PT t4 t4+PT

PT
ET
0

t0 1 © t4 t5
Declaration example:
TPInst:TP;
Example in FBD:
TPinst
TP
VarBOOL1—{IN Qf——— VarBO0LZ
T#53—|PT ET|- VarTimeCur

202512 (V1.1) 130

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

Example in ST:
TPInst(IN:=VarBOOL1,PT:=T#5s);
VarBOOL2:=TPInst.Q;

6.4.2 On-delay Timer (TON)

This timer function block realizes an on-delay timing.
Input:
IN:BOOL; if a rising edge is detected, ET starts timing
PT:TIME; the upper limit value of ET timing (i.e. delay time)
Output:
Q: BOOL; if the ET timing reaches PT, a rising edge is output
ET:TIME; the current state of time

TP(IN,PT,Q,ET): IN and PT are input variables of BOOL type and TIME type respectively. Q and ET are output
variables of BOOL type and TIME type respectively. If the value IN is FALSE, Q is FALSE and ET=0.

If the value IN is TRUE, the time in ET starts counting in milliseconds until ET=PT. After ET=PT, it will remain
constant. If INis TRUE and ET=PT, Q is TRUE. Otherwise, Q is FALSE. Therefore, when the delay (the time
defined by PT) elapses, a rising edge will be detected on Q.

The time sequence diagram of TON is as follows:

L

t0 t1 2 t3 t4 t5
M]
tO+PT 1 t4+PT 5
PT
Q
t0 t1 23 t4 t5
Declaration example:
TONInst:TON;
Example in FBD:
TONinst
TOH
VarBOOL1—IN 1] YarBOOLZ
T#S=—FT ET VarTineCur

Example in ST:
TONInst(IN:=VarBOOL1,PT:=T#5s);

6.4.3 Off-delay Timer (TOF)

This timer function block realizes an off-delay timing.
Input:
IN:BOOL; if a falling edge is detected, ET starts timing
PT:TIME; the upper limit value of ET timing (i.e. delay time)
Output:
Q: BOOL; if the ET timing reaches PT, a falling edge is output
ET:TIME; the current state of time

202512 (V1.1) 131

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

TOF(IN,PT,Q,ET): if IN is TRUE, Q is TRUE. If the value IN is FALSE, the time in ET starts counting in
milliseconds until ET=PT. After ET=PT, it will remain constant. If IN is FALSE and ET=PT, Q is FALSE;
otherwise, Q is TRUE. Therefore, when the delay elapses, a falling edge will be detected on Q.

The time sequence diagram of TOF is as follows:

IN ’—| ’_| ’—|
t0 t1 2 t3 t4 t5
U L
t0 tI+PT 12 t5+PT
PT
al 2 3 t4 t5 Q
Declaration example:
TOFInst:TOF;
Example in FBD:
TOFinst
ToF
YarBOOL1—IN 1] YarBOOLZ
T#5=—PT ET-VarTimeCur

Example in ST:
TOFInst(IN:=VarBOOL1,PT:=T#5s);
VarBOOL2:=TOFInst.Q;

6.4.4 Real-time Clock (RTC)

This clock function block starts timing from the set time.
Input:
EN:BOOL; if a rising edge is detected, CDT starts timing
PDT:DATE_AND_TIME; the date and time when the timing starts
Output:
Q: BOOL; when CDT starts timing, the output is TRUE
CDT:DATE_AND_TIME; the current date and time of the timer
VarBOOL2:=RTC(EN,PDT,Q,CDT): when EN is FALSE, the output variable Q is FALSE and CDT is
DT#1970-01-01-00:00:00. Once EN becomes TRUE (a rising edge is detected), as long as EN remains TRUE,

CDT isincremented in seconds with PDT as the initial value. When EN is reset to FALSE, CDT is reset to the
initial value DT#1970-01-01-00:00:00.

Declaration example:
RTCInst:RTC;

Example in FBD:

RTCinst
RTC
WarBOOL1—EN 1] YarBOOLZ
DT#=2006-03-30-14:00: 00— PDT CDT~ VarTimeCur

Examplein ST:
RTCInst(EN:=VarBOOL1,PDT:=DT#2006-03-30-14:00:00,Q=>VarBOOL2,CDT=>VarTimeCur);

202512 (V1.1) 132

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

6.5 Bit and Word Logic Instructions

Note: When using function block instructions such as SR, RS, R_TRIG, and F_TRIG, you need to add the
Standard library in the Library Manager of Invtmatic Studio platform.

6.5.1 AND Instruction

When the two input bits on the left side are non-zero, the output bit on the right side also outputs 1;
otherwise, it outputs 0.

Example in FBD:

AND

— EN ENO —
1 & L

6.5.2 OR Instruction

When at least one of the two input bits on the left side is non-zero, the value of the output bit on the right
side is 1; otherwise, it is 0.

Example in FBD:

OR

— EN ENO -

6.5.3 NOT Instruction
When the input bit is 0, the output bit on the right side outputs 1, and when the input bit on the left side is 1,
the output bit on the right side outputs 0.
Example in FBD:

NOT
EN ENO

6.5.4 XOR Instruction
When one of the two input bits on the left side is 1 and the other is 0, the output is 1; when the two input
values are both 1 or 0, the output is 0.
Example in FBD:

XOR
EN ENO
=1

6.5.5 Set Dominant (SR)

This bistable function block realizes a prior set. Q1=SR(SET1,RESET): Q1=NOT RESET AND Q1)OR SET1.
The input variables SET1 and RESET and the output variable Q1 are all of BOOL type.
Declaration example:

SRInst:SR;

202512 (V1.1) 133

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

Example in FBD:

JRinst
5B
VarBOOL1—] 3ET1 Qlf— ¥arBOOL3
VarBOOLZ— RESET

Examplein ST:

SRInst(SET1:=VarBOOL1,RESET:=VarBOOL2);
VarBOOL3:=SRInst.Q1;

6.5.6 Reset Dominant (RS)

This bistable function block realizes a prior reset. Q1=RS(SET,RESET1): Q1=NOTRESET1AND(Q1ORSET).
The input variables SET1 and RESET and the output variable Q1 are all of BOOL type.
Declaration example:
RSInst:RS;
Example in FBD:

E3inst
RS
VarBOOL1—SET Ql— VarEOOL3
VarBOOLZ2—|RESETL

Example in ST:

RSInst(SET:=VarBOOL1,RESET1:=VarBOOL?2);
VarBOOL3:=RSInst.Q1;

6.5.7 Rising Edge Detector (R_TRIG)

This edge detection function block detects a rising edge.
Input:

CLK: BOOL; the Boolean input signal is used to detect a rising edge
Output:

Q:BOOL; if CLK detects a rising edge, the output is TRUE

When CLK changes from "FALSE" to "TRUE", the rising edge detector starts, the output Q changes from
"TRUE" to "FALSE" and remains "FALSE" for one operation cycle of the PLC; if CLK continues to remain
"TRUE" or "FALSE", the output Q remains "FALSE".

Declaration example:
RTRIGInst:R_TRIG;
Example in FBD:

RTEIGinst

R TRIG
WarBOOL1—CLE

L]

—— VarBOOLZ

Examplein ST:
RTRIGInst(CLK:=VarBOOL1);
VarBOOL2:=RTRIGInst.Q;

202512 (V1.1) 134

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

6.5.8 Falling Edge Detector (F_TRIG)

This edge detection function block detects a falling edge.
Input:

CLK: BOOL; the Boolean input signal is used to detect a falling edge
Output:

Q:BOOL; if CLK detects a falling edge, the output is TRUE

When CLK changes from "TRUE" to "FALSE", the falling edge detector starts, the output Q changes from
"TRUE" to "FALSE" and remains "FALSE" for one operation cycle of the PLC; if CLK continues to remain
"TRUE" or "FALSE", the output Q remains "FALSE".

Declaration example:
FTRIGInst:F_TRIG;
Example in FBD:

FTRIGinst

F TRIG
WarBOOL1—CLE Qf— VarBOOLz

Example in ST:
FTRIGInst(CLK:=VarBOOL1);
VarBOOL2:=FTRIGInst.Q;

6.6 Bit/Byte Functions

6.6.1 EXTRACT

The input variable X of this function is of DWORD type and N is of BYTE type. The output variable is of BOOL
type, and the output is the value of the Nth bit of the input variable X, where N starts from the 0th bit.
Example in ST:

FLAG:=EXTRACT(X:=81,N:=4);

(*Result:TRUE,because8lisbinary1010001,sothe4thbitis1*)

FLAG:=EXTRACT(X:=33,N:=0);

(*Result:TRUE,because33isbinary100001,sothebit'0'is1*)

6.6.2 PACK

PACK is used to pack 8 BOOL type input variables B0, B1, ..., B7 into 1 BYTE type data.
The function block UNPACK is closely related to this function.

6.6.3 PUTBIT

The input variables X, N, and B of this function are of DWORD type, BYTE type, and BOOL type respectively.
PUTBIT is used to set the Nth bit of X to the value B, where N starts from the Oth bit.
Examplein ST:

varl:=38;(*binary100110*)

var2:=PUTBIT(A,4,TRUE);(*Result:54=2#110110%)

var3:=PUTBIT(A,1,FALSE);(*Result:36=2#100100*)

202512 (V1.1) 135

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

6.6.4 UNPACK

Note: When using the UNPACK function block, you need to add the Util library in the Library Manager of

Invtmatic Studio platform.

UNPACK is used to split the BYTE type input variable B into 8 BOOL type output variables B0, B1, ..., B7. It

functions oppositely to PACK.

Example in FBD:

UrF

PACK UNPACK
TRUE |— BO PACK B BO TRUE
FALSE — B1 B1 FALSE
TRUE H— B2 B2 TRLUE
FALSE —| B3 B3 FALSE
FALSE —— B4 B4 FALSE
TRUE |— B5 B5 TRUE
FALSE — Bs B FALSE

.| FALSE |— &7 B7 FALSE

6.7 Bit Shift Instructions

6.7.1 Bitwise Left-shift (SHL)

Shift the input value bit by bit to the left. The bits shifted out on the left are not processed and the bits on
the right are automatically filled with 0.

Example in FBD:

SHL
-+ EN ENO |-

Note: The data can only be of Integer type. If it is of floating point type, an error will be reported.

6.7.2 Bitwise Right-shift (SHR)

Shift the input value bit by bit to the right. The bits shifted out on the right are not processed and the bits on
the left are automatically filled with 0.

Example in FBD:

SHR
— EN ENO —

Note: The data can only be of Integer type. If it is of floating point type, an error will be reported.

6.7.3 Bitwise Left-rotation (ROL)

Rotate the input value bit by bit to the left, and the bits rotated out on the left are directly added to the least
significant bit on the right.

Example in FBD:

ROL
— EN ENO —

Note: The instruction supports the Integer data type.

202512 (V1.1) 136

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

6.7.4 Bitwise Right-rotation (ROR)

Rotate the input value bit by bit to the right, and the bits rotated out on the right are directly added to the
most significant bit on the left.

Example in FBD:

ROR
— EN ENO |-

Note: The instruction supports the Integer data type.

6.8 Data Type Conversion Instructions

6.8.1 BOOL_TO_<TYPE>

Convert a Boolean type variable to a variable of any other type.

Example in FBD:

BOOL TO BYTE
—EN ENO —

6.8.2 BYTE_TO_<TYPE>

Convert a Byte type variable to a variable of any other type.

Example in FBD:

BYTE TO DINT
— EN ENO |—

6.8.3 WORD_TO_<TYPE>

Convert a Word type variable to a variable of any other type.

Example in FBD:

WORD TO DT
~ EN ENO

6.8.4 DWORD_TO_<TYPE>

Convert a Double-word type variable to a variable of any other type.

Example in FBD:

DWORD TO_INT
— EN ENO -

202512 (V1.1) 137

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

6.8.5INT_TO_<TYPE>

Convert an Integer type variable to a variable of any other type.

Example in FBD:

INT TO BYTE
—{EN ENO |-

6.8.6 SINT_TO_<TYPE>

Convert a Short-integer type variable to a variable of any other type.

Example in FBD:

SINT TO REAL
— EN ENO |-

6.8.7 DINT_TO_<TYPE>

Convert a Long-integer type variable to a variable of any other type.

Example in FBD:

DINT TO BOOL
— EN ENO |

6.8.8 UDINT_TO_<TYPE>

Convert an unsigned Long-integer type variable to a variable of any other type.

Example in FBD:

UINT TO WORD
- EN ENO |

6.8.9 REAL_TO_<TYPE>

Convert a Real number type variable to a variable of any other type.

Example in FBD:

REAL_ TO WORD
— EN ENO

6.8.10 STRING_TO_<TYPE>

Convert a Character type variable to a variable of any other type.

Example in FBD:

STRING TO DWORD
4 EN ENO |-

202512 (V1.1) 138

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

6.8.11 TIME_TO_<TYPE>

Convert a Clock type variable to a variable of any other type.

Example in FBD:

TIME TO LWORD
1EN ENO |

6.8.12 TOD_TO_<TYPE>

Convert a Time type variable to a variable of any other type.

Example in FBD:

TOD_TO_LWORD
— EN ENO -

6.8.13 DATE_TO_<TYPE>

Convert a Date type variable to a variable of any other type.

Example in FBD:

DATE TO DWORD
—EN ENO |

6.8.14 DT_TO_<TYPE>

Convert a DateTime type variable to a variable of any other type.

Example in FBD:

DT TO INT
- EN ENO |

6.9 Data Processing Instructions

Note: When using function block instructions such as HEXinASCII_TO_BYTE and BYTE_TO_HEXinASClII,
you need to add the Util library in the Library Manager of Invtmatic Studio platform.

6.9.1 MOVE

This operator is used to assign the value of one variable to another variable of the same type.

Instruction format:

LD
Representation

MOVE
MOVE Assignment FC EN ENO | a2:=MOVE(al);

6.9.2 HEXinASCII_TO_BYTE

When this instruction is triggered, the HEXinASCII data in the source data is converted into Byte type data.

Instruction Name FB/FC ST Representation

Instruction format:

202512 (V1.1) 139

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions
Instruction Name FB/FC LD Representation ST Representation
. HEXINASCII_TO BYTE .
HEXinASCII - - HEXinASCII_TO_BY
HEXinASCII_TO_BYTE I FC — EN ENO - ! - -
to BYTE dw - TE(W:=);

6.9.3 BYTE_TO_HEXinASCII

When this instruction is triggered, the Byte type data in the source data is converted into HEXinASCII type

data.
Instruction format:
Instruction Name FB/FC LD Representation ST Representation
_ BYTE to e BYTE_TO_HEXinAS
BYTE_TO_HEXinASCII . FC EN ENO
HEXinASClII B ClI(B:=);

6.9.4 WORD_AS_STRING

When this instruction is triggered, the WORD type data in the source data is converted into STRING type

data.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
WORD AS STRING
WORD to — EN ENO WORD_AS_STRING
WORD_AS_STRING FC w
STRING e (W:=,0RDER:=);

6.10 Arithmetic Instructions

6.10.1 ADD

Add the two inputs on the left side and output the result on the right side.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
[ApD
ADD Addition FC 1N 4 N° ali=a2+a3;
6.10.2 SUB

Subtract one input from the other on the left side and output the result on the right side.

Instruction format:

Instruction

Name

FB/FC

LD Representation

ST Representation

SUB

Subtraction

FC

SUB

al:=a2-a3;

202512 (V1.1)

140

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

6.10.3 MUL

Multiply the two inputs on the left side and output the result on the right side.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
MUL
MUL Multiplication FC :Er\ X EI\O: ali=a2*a3;
6.10.4 DIV

Divide one input by the other on the left side and output the quotient on the right side.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
DIV
DIV Division FC =™ 7™ ali=a2/a3;
6.10.5 MOD

Perform the modulo division of one input by the other on the left side and output the non-negative integer

remainder on the right side.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
MOD
.. EN ENO
MOV Modulo division FC al:=a2 MOD a3;
6.10.6 ABS

Take the absolute value of the input data and assign it to the output variable.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
ABS
ABS Absolute value FC 4 EN ENOL q:=ABS();
6.10.7 SQRT

Compute the square root of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
SQRT
SQRT Square root FC — N ENO— q:=SQRT();

202512 (V1.1)

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

6.10.8 LN

Compute the natural logarithm of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
Natural W
atura
LN) FC EN ENO q:=LN();
logarithm e | L
6.10.9 LOG

Compute the logarithm of the input value in base 10 and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
] LOG
Logarithmin
LOG FC EN ENO :=LOG();
base 10 N L a 0

6.10.10 EXP

Compute the exponential function of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
EXP
Exponential _
EXP pone FC EN ENO q:=EXP();
function 1 ||

6.10.11 EXPT

Raise the input variable 1 to the power of the input variable 2 and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
EXPT
EN ENO
EXPT Exponentiation FC _ [q:=EXPT();
6.10.12 SIN

Compute the sine of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
SIN
SIN Sine FC EN ENO q:=SIN();

202512 (V1.1)

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

6.10.13 COS

Compute the cosine of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
oS
CoS Cosine FC EN ENO q:=COS();
6.10.14 TAN

Compute the tangent of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
TAN
TAN Tangent FC — EN ENO|— q:=TAN();
6.10.15 ASIN

Compute the arc sine of the input value and output the result.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
ASIN
ASIN Arc sine FC —— EN ENO}— q:=ASIN();
6.10.16 ACOS

Compute the arc cosine of the input value and output the result in radians.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
ACOS
ACOS Arc cosine FC —— EN ENO — q:=ACOS();
6.10.17 ATAN

Compute the arc tangent of the input value and output the result in radians.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
ATAN
ATAN Arc tangent FC EN ENO q:=ATAN();

202512 (V1.1)

143

INVT Medium and Large-Scale PLC Programming Manual

6.10.18 RAD/DEG

Basic Instructions

RAD: Convert floating point degrees into radians. The calculation formula is [Radians = Degrees X 1/180].

DEG: Convert floating point radians into degrees. The calculation formula is [Degrees = Radians X n/180].

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
Degrees to RAD
RAD Bre FC —EN ENO[q:=RAD();
radians —| fAngle -
Radians to DEG
DEG FC —EN ENO- q:=DEG();
degrees —] fRadian -
6.10.19 SIZEOF

The input value is used to define the number of bytes required by a "variable". The SIZEOF operator always
returns an unsigned value. The type of the returned variable adapts to

the detected size of the "variable".

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
Size of data SIZEOF
SIZEOF FC ~ EN ENO - SIZEOF();
type _ L

6.11 Date and Time Instructions

#Note: When using function block instructions such as SetDateAndTime and GetDateAndTime, you need to
add the CAA DTUtil Extern library in the Library Manager of Invtmatic Studio platform.

6.11.1 SetDateAndTime

Set the time zone, date, and time of the current system.

Instruction format:

SetDateAndTime
—xExecute xDone p—
—dtDatefndTime wBusy—
XErrorp—
eErrorf—

6.11.2 GetDateAndTime

Get the time zone, date, and time of the current system.

Instruction format:

GetDateAndTime
—xExecute xDane
xBusy
xError
eError
dtDatefndTime
ePerinde

202512 (V1.1) 144

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

6.12 String Function Instructions

6.12.1 LEN

This function is used to get the length of a character string. The input variable STR is of the STRING type, and
the return value is of the INT type.

Example in FBD:

LEH
'AUSI'—53TR — WVarINT1

Example in ST:
VarINT1:=LEN('SUSI");

6.12.2 LEFT

This function is used to get certain characters from the left of a source character string. The input variable
STRis of the STRING type, the input variable SIZE is of the INT type, and the return value is of the STRING
type.

LEFT (STR, SIZE) is used to get the characters with the length specified by SIZE, starting from the left of the
character string STR.

Example in FBD:

LEFT
'AUST' 1 3TR —— Var3TRINGL
3 aliE

Example in ST:
VarSTRINGL:=LEFT('SUSI',3);

6.12.3 RIGHT

This function is used to obtain certain characters from the right of a source character string. The input
variable STR is of the STRING type, the input variable SIZE is of the INT type, and the return value is of the
STRING type.

RIGHT (STR, SIZE) is used to get the characters with the length specified by SIZE, starting from the right of
the character string STR.

Example in FBD:

BIGHT
PEU3I'— 8 TR — Var3TRING1
3] 3I:ZE
Examplein ST:
VarSTRINGL1 := RIGHT ('SUSI",3);
6.12.4 MID

This function is used to get certain characters from a source character string. The input variable STR is of the
STRING type, the input variables LEN and POS are of the INT type, and the return value is of the STRING type.

MID (STR, LEN, POS) is used to obtain the characters with the length specified by LEN, starting from the
character with the position specified by POS of the character string STR.

202512 (V1.1) 145

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

Example in FBD:

MID
PAUSI'— 3TR —— Var3TRINGL
2 LEN
2— P05
Examplein ST:
VarSTRING1:=MID('SUSI',2,2);
6.12.5 CONCAT

This function is used to concatenate two character strings. The input variables STR1 and STR2, and the
return value are of the STRING type.

Example in FBD:

COHCAT
PEOaI ' —1 3TRL Var 3TRINGL
'"WILLI'— 3TRZ

Example in ST:
VarSTRING1:=CONCAT('SUSI',"WILLI");

6.12.6 INSERT

This function is used to insert another character string at a specified position into a source character string.

The input variables STR1 and STR2 are of the STRING type, the input variable POS is of the INT type, and the
return value is of the STRING type.

INSERT(STR1,STR2,POS) is used to insert the character string STR2 next to the position specified by POS into
the character string STR1.

Example in FBD:

IHSERT
'AUST'—ATEL — Var3dTRINGL
'RV ATRZ
i 0

Example in ST:
VarSTRINGL:=INSERT('SUSI','XY",2);

6.12.7 DELETE

This function is used to delete specified characters from a specified position of a source character string.

The input variable STR is of the STRING type, the input variables LEN and POS are of the INT type, and the
return value is of the STRING type.

DELETE (STR, L, POS) is used to delete certain characters from the character string STR, where L specifies the
length of characters to be deleted and POS specifies the character deletion start position.

Example in FBD:

DELETE
PETRTII — 3TR War3TRING]
2 LEN
3— P03

202512 (V1.1) 146

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

Example in ST:
Varl:=DELETE('SUXYSI',2,3);
6.12.8 REPLACE
This function is used to replace certain characters at a specified position of a source character string with
another given character string.

The input variables STR1 and STR2 are of the STRING type, the input variables L and P are of the INT type,
and the return value is of the STRING type.

REPLACE(STR1,STR2,L,P) is used to replace certain characters with the character string STR2 for the
character string STR1, where L specifies the length of characters to be replaced and P specifies the character
replacement start position.

Example in FBD:

BEPLACE
'ETEYSI —5TRL —— Var3TRINGL
'EK'—53TRZ
2—L
2—F

Example in ST:
VarSTRING1:=REPLACE('SUXYSI','K',2,2);
6.12.9 FIND
This function is used to search a character string for certain characters. The input variables STR1 and STR2

are of the STRING type, and the return value is of the INT type.

FIND(STR1,STR2)) is used to find where STR2 occurs in STR1 for the first time. If STR2 is not found in STR1,
the message is displayed: "OUT:=0".

Example in FBD:

FIHD
'ahedef'—] 5TR1 —— VarINT1
'de'— 5 TRZ

Example in ST:
arINT1:=FIND('abcdef','de");

6.13 Address Operation Instructions

6.13.1 ADR/A

ADR: Get the memory address of the input variable and assign the result to the output variable. This
operator is an extension of the IEC61131-3 standard”: Get the address content of the input variable and
assign the result to the output variable.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
ADR
ADR Get address FC - EN ENO ADR();

202512 (V1.1) 147

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

Instruction Name FB/FC LD Representation ST Representation
A Get address EC A A
content

6.13.2 BITADR

Get the memory address of a BOOL type variable and assign the result to the output variable.

Instruction format:

Instruction Name FB/FC LD Representation ST Representation
BITADR
. — EN ENO |-
BITADR Bit address FC N BITADR();

6.14 File Operation Instructions

6.14.1 Overview
This library is mainly used for importing and exporting files/folders between an SD card and the local PLC, as
well as deleting and writing files/folders.

The default SD card path is /home/root/temp/. If this path cannot be used, please try another version of the
SD card path: /home/root/sdcard/. The default local PLC path is /home/CODESYS/PlcLogic/.

Note: When using function block instructions such as Files_load, you need to add the INVT Files_Function
library in the Library Manager.

6.14.2 Input and Output

Description of file structure:

In order to facilitate the storage and operation of file information, a custom file structure is created. This
structure differs from the FILE_DIR_ENTRY structure in that a Direction (file path) parameter is added.

Name Data Type Comment
Name STRING File name (including the file extension)
Direction STRING File path
isDirectory BOOL Folder flag, TRUE: folder, FALSE: file
Size CAA.SIZE File memory size, unit: Byte
LastModification DATE_AND_TIME |Last modification time of the file

6.14.3 Load Files (files_load)

Files_Load
—{bExecute Filesp—
—Direction Files_Countf—
—Only_Files Errarf—
ErrorIDf—
Donep—
Category Name Data Type Initial Value Comment
bExecute BOOL - Rising edge trigger
Input . . '/home/CODESYS
Direction STRING . , |Target path
/PlcLogic/_cnc/

202512 (V1.1) 148

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

Category Name Data Type Initial Value Comment
only Files BOOL TRUE: Only load files
Y- FALSE: Load both files and folders
ARRAY[0---20] OF
Files [_] - List of loaded files, maximum 20
Files
Files_Count UINT - Number of loaded files/folders
Output
Error BOOL - Alarm flag
ErrorlD UINT - Alarm code
Done BOOL - Load completed flag
6.14.4 Copy Files (Files_Copy)
Files Copy
— bExecute Errorfp—
—File ErrorIDf—
—DestDir Donefp—
—Overirite Busyf—
Category | Name Data Type Initial value Comment
bExecute BOOL - Rising edge trigger
File Files - Files to be copied
. '/home/CODESYS|Default path: local PLC: _cnc folder,
DestDir STRING .
Input /PlcLogic/_cnc/' |SD card: /home/root/temp/
Overwrite existing files
OverWrite BOOL - TRUE: Overwrite, FALSE: Do not
overwrite
Error BOOL - Alarm flag
ErrorlD UINT - Alarm code
Output
Done BOOL - Copy completed flag
Busy BOOL - Copying
6.14.5 Delete Files (Delete_File)
Files_Delete
— bExecute Donef—
—File ¥Errorf—
eErrorf—
Category Name Data Type Initial value Comment
Input bExecute BOOL - Rising edge trigger
P File Files - Files to be deleted
Error BOOL - Alarm flag
Output ErrorlD UNIT - Alarm code
Done BOOL - Delete completed flag
6.14.6 Write Files (Write_File)
Write_File
—bExecute Daonef—
—{OwverWrite Busyf—
—FileName Errorf—
—Direction ErrorlDf—
— DatalList
—DataListNum

202512 (V1.1)

149

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

Category | Name Data Type Initial value Comment
bExecute BOOL - Rising edge trigger
Input TRUE: Overwriting
P OverWrite FALSE FALSE FALSE: The file has not been
written
. Name of the file to be written
FileName | CAA.FILENAME 'xx.cnc'
(including the file extension)
'/h CODESYS/PI
Direction STRING /home;(/P Eile path
Logic/_cnc/'
Input List of data to be written row by
DataList ARRAY[0..999] OF row, with a maximum of 1000 data
STRING(150) i .
entries stored at one time
DatalListN
ml ! INT - Number of entries in the data list
Error BOOL - Alarm flag
ErrorlD UINT - Alarm code
Output -
Done BOOL - Write completed flag
Busy BOOL - Writing flag

Use of the function block

Itis implemented as follows in the ST language:

VAR

Load:files_load;

Load_Execite:BOOL;
Load_Direction:STRING:='/home/CODESYS/PlcLogic/_cnc/';
Load_Only_File:BOOL;

files:ARRAY[0..19] OF files;

files_Cunt:UINT;

Load_Error:BOOL;

Load_ErrorID:UINT;

Load_Done:BOOL,;

Copy:Files_Copy;

Copy_Execute:BOOL;

File_Index:UINT:=0;

Copy_File:Files;
Copy_DestDir:STRING:='/home/CODESYS/PIcLogic/_cnc/112/";
Copy_OverWrite:BOOL;

Copy_Error:BOOL;

Copy_ErrorID:UINT;

Copy_Done:BOOL;

Copy_Busy:BOOL,;

Delete:Files_Delete;
Delete_Execute:BOOL;
Delete_File:Files;
Delete_Done:BOOL;

202512 (V1.1)

150

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

Delete_Error:BOOL,;
Delete_ErrorID:UINT,;

Write:Write_File;
Write_Execute:BOOL;
Write_OverWrite:BOOL;
Write_FileName:STRING;

Write_Direction:STRING:='/home/CODESYS/PlcLogic/_cnc/";
Write_DataList:ARRAY [0..999] OF STRING(150);

Write_DataListNum:UINT;

Write_Done:BOOL,;

Write_Busy:BOOL,

Write_Error:BOOL,;

Write_ErrorID:UINT;
END_VAR

Load(
bExecute:= Load_Execite,
Direction:= Load_Direction,
Only_Files:= Load_Only_File,
Files=>files,
Files_Count=> files_Cunt,
Error=> Load_Error,
ErrorlID=>Load_ErrorID,
Done=>Load_Done);

IF Load_Done THEN
Load_Execite:=FALSE;

END_IF

Copy_File:=files[File_Index];
Copy(
bExecute:= Copy_Execute,
File:= Copy_File,
DestDir:= Copy_DestDir,
OverWrite:= Copy_OverWrite,
Error=> Copy_Error,
ErrorID=> Copy_ErrorID,
Done=>Copy_Done,
Busy=> Copy_Busy);
IF Copy_Done THEN
Copy_Execute:=FALSE;
END_IF

//Delete_File.Direction:=Copy_DestDir;

202512 (V1.1)

151

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

Delete(
bExecute:= Delete_Execute,
File:= Delete_File,
Done=> Delete_Done,
Error=>Delete_Error,
ErrorID=> Delete_ErrorID);
IF Delete_Done THEN
Delete_Execute:=FALSE;
END_IF

Write_DataListNum:=3;
Write_DatalList[0]:='00";
Write_DatalList[1]:='111";
Write_DatalList[2]:='2222";
Write_FileName:=files[File_Index].Name;
Write(
bExecute:= Write_Execute,
OverWrite:= Write_OverWrite,
FileName:= Write_FileName,
Direction:= Write_Direction,
DataList:= Write_DatalList,
DataListNum:=Write_DataListNum,
Done=> Write_Done,
Busy=> Write_Busy,
Error=> Write_Error,
ErrorID=> Write_ErrorID);
IF Write_Done THEN
Write_Execute:=FALSE;

END_IF
Error ID Error Type Solution
16#0000 No alarm -
16#0001 The target d|rect|F>n path does Re-confirm the target path
not exist
16#0002 Failed to get the file name |Confirm the name of the file to be loaded
1640003 Timeout when closing the |Confirm that other functions do not operate on the
target path path when closing it

16#0004 Failed to copy the file/folder |Confirm whether the file and target path exist
16#0005 Failed to delete the file/folder |Confirm whether the file and target path exist

16#0006 Failed to open thefile Confirm that the file path and name are correct
1640007 Failed to write the file C.onfirm the amount of data to be written to avoid a
timeout

Confirm that th ti bei
16#0008 Failed to close the file ontirm that no OENEr operations are being

performed on the file when the file is closed.

Determine if the size of the file to be copied exceeds

16#0009 The copied file exceeds 100 kB
100 kB

202512 (V1.1) 152

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

6.15 Regulators

Note: When using function block instructions such as PD and PID, you need to add the Util library in the
Library Manager of Invtmatic Studio platform.

6.15.1 PD

This function block is used to regulate proportions and differentials.

Input variables:

Variable Data Type Description
ACTUAL REAL Actual value of the control variable.
SET_POINT REAL Description value and instruction value.
Kp REAL Proportional coefficient used to represent the proportional gain of
the P-part.
v REAL Differential time used to represent the time calculated in seconds of
the D-part. For example, "0.5" indicates 500 s.
Y_MANUAL REAL Used to define the output value Y when MANUAL=TRUE.
Y_OFFSET REAL Offset value of the operation value Y.
Lower limit and upper limit of the operation value Y. If Y reaches a
limit value, LIMITS_ACTIVE is set to TRUE and Y is kept within the
Y_MIN,Y_MAX REAL . .
formulated range. This function block works only when Y_MIN <
Y_MAX.
Ifitis TRUE, manual operating is activated, and the output value is
MANUAL BOOL .
defined through Y_MANUAL.
Setting the value to TRUE will reset the controller. During
RESET BOOL e .
re-initialization, Y is equal to Y_OFFSET.
Output variables:
Variable Data Type Description
Y REAL Operation value, defined by the function block (see the following).
When the value is TRUE, Y reaches the given limit value (Y_MIN or
LIMITS_ACTIVE BOOL Y_MAX)

Example in FBD:

pd_inst
pd
—ACTUAL Y
—HSET_FOINT LIMITS_ACTIWE—
kP
T
-Y_OFFSET
—{¥_MIM
—{v_hA
—{MANUAL

-RESET INV‘_

Y_OFFSET, Y_MIN, and Y_MAX are used to convert numbers in specified ranges.

MANUAL can be used to enable or disable manual operating. RESET is used to reset the controller.

During normal operating (MANUAL = RESET = LIMITS_ACTIVE = FALSE), the controller calculates the

deviation value SET_POINT-ACTUAL and stores the time-related derivatives de/dt as internal variables.

The output value Y can be obtained by using the following:

Where A=SET_POINT-ACTUAL

SA
Y=KP- (A + TVE) + Y_OFFSET

202512 (V1.1)

153

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

Therefore, except for the P-part and the present deviation (D-part) of the controller, all the others have an
impact on the calculation output.

In addition, Y is restricted to the range defined by Y_MIN and Y_MAX. If Y reaches a limit value,

LIMITS_ACTIVE is set to TRUE. If there is no calculation limit value, Y_MIN and Y_MAX must be set to 0.

Once MANUAL=TRUE, Y is written into Y_MANUAL.

A P adjustment can be achieved by setting TV=0.

6.15.2 PID

This function block is used to regulate proportions, integrals, and differentials.

Input variables:

Variable |Data Type Description
ACTUAL REAL |Actual value of the control variable
SET_POINT REAL |Expected value, instruction variable
Kp REAL Proportional coefficient. The value cannot be 0 for the unity gain in the
P-part; otherwise, the function block does not perform any calculations.
Reset time. The unit gain in the part is fixed to seconds. For example,
"0.5" is 500 milliseconds, the value must be greater than 0; otherwise, the
TN REAL |function block does not perform any calculations. A smaller TN value
obtains a greater integral part, including the variable value. A greater TN
value obtains a smaller integral part.
v REAL When the differential functions, the unit gain in the D-part is fixed to
seconds. For example, "0.5" is 500 milliseconds.
Y_MANUAL REAL |The outputvalueisY when MANUAL = TRUE.
Y_OFFSET REAL |Offset operation variable Y
A smaller resp value indicates a higher upper limit of the operation
Y_MIN, variable. o . .
v MAX REAL |IfY exceeds a limit value, LIMITS_ACTIVE is set to TRUE and Y is kept
- within the formulated range.
Only when Y_MIN <Y_MAX, the control takes effect.
If it is TRUE, manual operating is activated, and the operation variable is
MANUAL BOOL .
defined through Y_MANUAL.
RESET BOOL During i.nitialization in which Y is equal to Y_OFFSET, setting the value to
TRUE will reset the controller.
Output variables:
Variable Data Type Description
v REAL Operation variable value, defined by the function block (see the
following).
The value TRUE indicates that Y is out of the range defined by
LIMITS_ACTIVE BOOL
Y_MIN and Y_MAX.
OVERFLOW BOOL The value TRUE indicates overflow (see the following).

202512 (V1.1)

154

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

Example in FBD:

pid_inst

ACTUAL
SET_POINT
kP

PID

Y
LIMITS_ACTIVE -
OWERFLOW

TH

™
¥_MANLAL
Y_OFFSET
Y_MIN
Y_Mde
MaMNLUAL
RESET

Y_OFFSET, Y_MIN, and Y_MAX are used to convert numbers in specified ranges.
MANUAL can be used to enable or disable manual operating. RESET is used to reset the controller.

During normal operating (MANUAL = RESET = LIMITS_ACTIVE = FALSE), the controller calculates the
deviation value SET_POINT-ACTUAL and stores the time-related derivatives de/dt as internal variables.

The output value Y can be obtained by using the following:

A
Y=KP- (A edt + TVE) + Y_OFFSET

TN
Where A=SET_POINT-ACTUAL

Therefore, except for the P-part and the present deviation (D-part) of the controller, all the others have an
impact on the calculation output.

The PID controller can be easily converted into a Pl controller by setting TV=0.

Incorrect controller parameter settings may cause overflow if the incorrect integral part becomes larger.
Therefore, for safety purpose, the output can call OVERFLOW, in which the value is TRUE. This happens only
when the control system is unstable due to incorrect parameter settings. At the same time, the controller is
suspended and can be reactivated only through re-initialization.

6.15.3 PID_FIXCYCLE

Example in FBD:

PID_FIXCYCLE

—ACTUAL : REAL ¥ REALI—
—SET_POINT : REAL LIMITE_ACTIVE : BOOL—
— kP : REAL OWERFLOWY : BOOLI—
—TH : REAL

— T REAL
—7_MANUAL REAL
—¥_OFFSET : REAL
—v_MIN : REAL
—_M&x D REAL
—MANUAL - BOOL
—RESET : BOOL
—CYCLE | REAL

The function of this function module is the same as that of the PID controller. The difference is that its cycle
time is set by CYCLE (seconds) instead of being automatically measured by an internal function.

6.16 BCD Conversion Instructions

6.16.1 BCD_TO_INT

This function is used to convert one byte in BCD format into an INT value. The input variable is of BYTE type
and the output variable is of INT type.

When the byte to be converted is not in BCD format, the output is-1.

202512 (V1.1) 155

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

Example in ST:
i:=BCD_TO_INT(73); (* Resultis49*)
k:=BCD_TO_INT(151); (* Result is 97 *)
:=BCD_TO_INT(15); (* Output-1, becauseitis notin BCD format *)

6.16.2 INT_TO_BCD

This function is used to convert an INT value into a byte in BCD format. The input variable is of INT type and
the output variable is of BYTE type.
When the INT value cannot be converted to a byte in BCD format, the output is 255.
Examplein ST:
i:=INT_TO_BCD(49); (* Resultis73%)
k:=BCD_TO_INT(97); (* Resultis151%)
[:=BCD_TO_INT(100); (* Error! Qutput: 255 *)

6.17 System Instructions

6.17.1 PLC Fault Diagnosis Instructions

These fault diagnosis instructions are applicable to TM and TP series PLCs. For error IDs, please refer to
section 10.2 PLC Error Code Table (for TM and TP series PLCs) to look for the error description.

Note: When using system function block instructions, you need to add the relevant INVT libraries in the
Library Manager, such as CmpErrDiagnose, TM_CMPPLC_Cfg, and SysCfgNetWork.

6.17.1.1 CPU_ERR_DIAGNOSE

This function block is used to read/write CPU fault information.

Example in FBD:

CPU_ERR_DIAGNOSE
—wEnable ¥Donef—
—CpuErrData

6.17.1.2 MODBUS_RTU_MASTER_DIAGNOSE

This function block is used to read/write Modbus_RTU_Master fault information.

Example in FBD:

MODBUS_RTU_MASTER_DIAGNOSE
—{xEnable xDaonef—
—{ComId
—{ModbusErrData

6.17.1.3 MODBUS_RTU_SLAVE_DIAGNOSE

This function block is used to read/write Modbus_RTU_Slave fault information.

Example in FBD:

MODBUS_RTU_SLAVE_DIAGNOSE
—xEnable xDonef—
—CamId

—{ModbusErrData

6.17.1.4 MODBUS_TCP_MASTER_DIAGNOSE

This function block is used to read/write Modbus_TCP_Master fault information.

Example in FBD:

202512 (V1.1) 156

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

MODBUS_TCP_MASTER_DIAGNOSE
—{xEnable
—Partld
—{ModbusErrData

xDone

6.17.1.5 MODBUS_TCP_SLAVE_DIAGNOSE

This function block is used to read/write Modbus_TCP_Slave fault information.

Example in FBD:

MODBUS_TCP_SLAVE_DIAGNOSE
—xEnable

—Portld

—ModbusErrData

xDone

Examplein ST:

The use routine of the function block is as follows, and you can choose which function block to use as
needed. When calling a function block instance, you should point the structure pointer to the corresponding
error information structure array address, which stores the corresponding error diagnosis information;

when multiple errors are diagnosed, the array can store multiple errors. The size of the array depends on
your needs and can be defined by you, but it must be larger than the number of errors diagnosed.

PROGRAM PLC_FRE 1
VAR
cpuerrcode : CPU_ERR_DIAGNOSE;
icsrrcods : I0_ERR_DIAGHOSE:
modbuserreode : MODBUS_ERR_DIAGHOSE;

cputmp
iotmp
modbustmp

11 END VAR
cpuerrcode (xEnable:= ,

CpuErrData:= ADR(cputmp), The pointer points to the &
xDone=>) ;

ioerrcode (xEnable:= ,
ToErrData:= ADR(iotmp),
xDone=>);

modbuserrcode (ModbusEnable:= |,
ModbusErrData:= ADR(modbustmp) ,
xDone=>)i

6.17.2 IP and Time Instructions of the TM Controller

6.17.2.1 IP_Mod (only applicable to the TM series PLC and cannot be placed under

high-priority tasks such as EtherCAT)

This function block is used to read/write network parameter information, including IP addresses, subnet

masks, and gateway addresses.

Example in FBD:

IP_Mod
—En_Wr Donep—
—En_Rd Err_Info pb—
—{Wr_IP1_Addr Rd_IP1_Addrf—
—Wr_IP1_Metmask Rd_IP1_Netmaski—
—Wr_IP1_Gateway Rd_IP1_GatewayF—
—Wr_IP2_Addr Rd_IF2_addrf—
—Wr_IF2_Metmask Rd_IP2Z MNetmaskp—
—Wr_IP2_Gateway Rd_IFZ_Gatewayf—

6.17.2.2 RTC_Mod (only applicable to the TM series PLC and canot be placed under

high-priority tasks such as EtherCAT)

This function block is used to read/write the controller time.

202512 (V1.1)

157

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

Example in FBD:

RTC_Mod
—Set_Date Get_Datefp—
—Set_Time Get_Timef—
—En_Set Done_Setp—
—En_Get Done_Getf—

Err_Info

6.17.3 IP and Time Instructions of the TP Controller

6.17.3.1 RTC_Mod (only applicable to the TP series PLC and canot be placed under

high-priority tasks such as EtherCAT)

This function block is used to read the controller time.

Example in FBD:

—En_Get

RTC_MOD

Get_Date
Get_Time
Err_Info

Done_Gef

6.17.3.2 Sys_NetworkConfig (only applicable to the TP series PLC and canot be placed under

high-priority tasks such as EtherCAT)

This function block is used to set network parameter information, including IP addresses, subnet masks, and

gateway addresses.

Example in FBD:

Sys_NetworkConfig
—Enable Donef—
—Lan5elect Busyp—
—Ip&Address Errorf—
—Netmask Errorldf—
—Gateway

6.17.3.3 Sys_Networkinfo (only applicable to the TP series PLC and canot be placed under

high-priority tasks such as EtherCAT)

This function block is used to read network parameter information, including IP addresses, subnet masks,

and gateway addresses.

Example in FBD:

—Enable
—|LanSelect

Sys_NetworkInfo

IpAddressf—
Metmask—
Gatewayf—

Donef—
Busyp—
Errorf—
Errorldf—

6.18 Signal Generator

Note: When using the BLINK function block instruction, you need to add the Util library in the Library

Manager of Invtmatic Studio platform.

6.18.1 BLINK

This function block is used to generate a pulse signal. The input variable ENABLE is of BOOL type, and

TIMELOW and TIMEHIGH are of TIME type. The output variable OUT is of BOOL type.

202512 (V1.1) 158

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

If the value of ENABLE is TRUE, BLINK is enabled. OUT is TRUE during the time period setin TIMEHIGH, and
OUT is FALSE during the time period set in TIMELOW.

Example in CFC:

Blinker

balirk TRUE
TRUE |—{EMABLE ouTH
w25 TIMELOWY [o
iz [TIMEHIGH [~ = FalSE

6.18.2 FREQ_MEASURE

This function block is used to measure the (average) frequency value (Hz) of a Boolean input signal. You can
specify the measurement cycle. One cycle refers to the interval between two rising edges of the signal.

Input variables:

Variable Data Type Description
IN BOOL Input signal
Cycle number, the time interval between two rising edges, through
PERIODS INT which the average frequency of the input signal is calculated, possible
values: 1-10
RESET BOOL Reset all parametersto 0

Output variables:

Variable Data Type Description
ouT REAL Result frequency (Hz)
FALSE until the first measurement cycle is completed, or if the cycle >
VALID BOOL T .
3*0UT (indicating an input error)

Example in FBD:

6.18.3 GEN

FREG_MEASURE

—IM BOOL OuUT : REAL—
—FERIODS | INT(1..10) ¥ALID : BOOL—
—RESET : BOOL

This function block is used to generate a standard oscillation cycle.

The input variable MODE can be predefined as the GEN_MODE type; BASE as the BOOL type; PERIOD as the
TIME type; CYCLES and AMPLITUDE as the INT type; and RESET as the BOOL type.

MODE is used to define the oscillation cycle mode generated. Here, the enumeration values TRIANGLE and
TRIANGLE_POS are triangle waves, SAWTOOTH_RISE is an increasing sawtooth wave, SAWTOOTH_FALL is a
decreasing sawtooth wave, RECTANGLE is a square wave, SINUS and COSINUS are sine and cosine waves

respectively.

BASE is used to define whether the cycle period is defined using the set time (BASE=TRUE) or whether the
cycle period is defined using a specific cycle value representing the number of times the function block is
called (BASE=FALSE). PERIOD or CYCLES is used to define the corresponding cycle period. AMPLITUDE is
used to define the amplitude produced. When RESET=TRUE, the signal generator is reset to 0.

202512 (V1.1)

159

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

Amplitude

-Armplitude

Amplitude

-Amplitude

Arnplitude

-Amplitude

Arnplitude

-Amplitude

Amplitude

-Amplitude

Amplitude

-Amplitude

— TRIANGLE_POS
TRIAMNGLE

— SAWTOOTH RISE
SAWTOOTH FALL

— =IN
cos

202512 (V1.1)

160

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

Armplitude

-Amplitude

— RECTANGLE

Example in CFC:
gen_inst
GEH
gen_mode —HODE ouT
bEase —BASE
tPeriod —FERIOD
iCycles —CYCLES
idwpl — AMPLITUDE
bhReset —REZET

idut

6.19 Auxiliary Mathematical Function Blocks

Note: When using function block instructions such as DERIVATIVE and INTEGRAL, you need to add the Util
library in the Library Manager of Invtmatic Studio platform.

6.19.1 DERIVATIVE

This function block is used to determine local approximate derivatives.

The input variable IN is of REAL type; TM is of DWORD type and represents time in milliseconds; RESET is of
BOOL type, and when its value is TRUE, the function block is reset. The output variable OUT is of REAL type.

To achieve the most accurate result, DERIVATIVE approximates the last 4 values so that the inaccuracies
introduced in the input parameters are minimized.

Example in FBD:

derivative_inst
DERIVATIVE

rInput —IN ouUT

dyTime —TH

bReset —RESET

rout

202512 (V1.1) 161

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

DERIVATIVE input and output:

— DERIVATIVE.IN
DERIMATIVE. OUT

6.19.2 INTEGRAL

This function block is used to determine approximately the integral.

Similar to DERIVATIVE, the input variable IN is of REAL type; TM is of DIWORD type and represents time in
milliseconds; RESET is of BOOL type, and when the value is TRUE, the function block is reset. The output
variable OUT is of REAL type.

The integral is approximated by two step functions and the average of the data is the approximate integral.

Example in FBD:

integral_inst

THTE GRAL
rInput —IN OUT [-r0ut
dwTime —TH OVERFLOWFbOwerf low
hReset —FESET

INTEGRAL input and output:

— INTEGRAL.IN
INTEGRAL.OUT

6.19.3 LIN_TRAFO

This function block transforms a real number within a range defined by an upper limit value and a lower
limit value into a real number within a range defined by another upper limit value and another lower limit
value.

The following expression is based on this transformation:

(IN-IN_MIN):(IN_MAX-IN)=(OUT-OUT_MIN):(OUT_MAX-OUT)

202512 (V1.1) 162

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

LIN_TRAFO

IM: REAL OUT: REAL—
EIN_MIN ‘REAL ERROR:BOOL—
IM_MAX: REAL

—QUT_MIN : REAL
—OUT_MA : REAL

Input variables:

Variable Data Type Description
IN REAL Input variable
IN_MIN REAL Lower limit value of the variable range
IN_MAX REAL Upper limit value of the variable range
OUT_MIN REAL Lower limit value of the output range
OUT_MAX REAL Upper limit value of the output range

Output variables:

Variable Data Type Description
ouT REAL Output value
Error: TRUE if IN_MIN=IN_MAX, or if IN exceeds the specified
ERROR BOOL .
input range

Application example:

A temperature sensor provides Volt-values (input IN). These are to be converted to temperature values in
degree centigrade (output OUT). The input (Volt) values range is defined by the limits IN_MIN=0 and
IN_MAX=10. The output (degree centigrade) value range is defined by the limits OUT_MIN=-20 and
OUT_MAX=40. Thus for an input of 5V, a temperature of 10°C will be output.

6.19.4 STATISTICS_INT

This function block is used to calculate some standard statistical values.

The input variable IN is of INT type. When the BOOL type input variable RESET is TRUE, all values are
reinitialized.

The output variable MN is the minimum value of IN, MX is the maximum value of IN, and AVG is the average
value. The three output variables are all of INT type.

Example in FBD:

STAT
statistics_int
—HIM M) —
RESET M —

AVGE—

6.19.5 STATISTICS_REAL

This function block is similar to STATISTICS_INT, except that the input variable IN and the output variables
MN, MX, and AVG are all of REAL type.

6.19.6 VARIANCE

VARIANCE calculates the variance of an input value.
The input variable IN is of REAL type, RESET is of BOOL type, and the output variable OUT is of REAL type.

This function block is used to calculate the variance of an input value. When RESET=TRUE, VARIANCE will be
reset.

The standard deviation can be easily obtained by taking the square root of the variance.

202512 (V1.1) 163

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

6.20 Operation Function Blocks

Note: When using function block instructions such as CHARCURVE and HYSTERESIS, you need to add the

Util library in the Library Manager of Invtmatic Studio platform.

6.20.1 CHARCURVE

This function block is used to map an input value onto a characteristic curve.

Theinput IN is of INT type and used to set the value to be processed; N is of BYTE type and used to set the
number of points. P is a predefined POINT type based on two integer values (X and Y). The array P[0...10] is

used to generate the characteristic curve.

The output variable OUT is of INT type and used to output processed data; ERR is of BYTE type and used to

display errors.

The points P[0]...P[N-1] in the array must be stored according to the size of their X values; otherwise, ERR
returns a value of 1. If the value of the input IN is not between P[0].X and P[N-1].X, ERR=2, and OUT is the

corresponding limit value P[0].Y or P[N-1].Y.

If the value of N is outside the allowable value range of 2 to 11, then ERR=4.

Example in FBD:

charcurve_inst

iInput —IN
byPoints —N

o

arrCurve —

CHARCURVE

omIT
EFR

—idut
—hyError

Example in ST:
First, define the array P
VAR

CHARACTERISTIC_LINE:CHARCURVE;
KL:ARRAY[0..10]OFPOINT:=[(X:=0,Y:=0),(X:=250,Y:=50),

(X:=500,Y:=150),(X:=750,Y:=400),7((X:=1000,Y:=1000))];

COUNTER:INT;

END_VAR

Then, define a CHARCURVE with an increasing value, for example:

COUNTER:=COUNTER+10;

CHARACTERISTIC_LINE(IN:=COUNTER,N:=5,P:=KL);

[llustration of the resulting curve:

202512 (V1.1)

164

INVT Medium and Large-Scale PLC Programming Manual

Basic Instructions

6.20.2 RAMP_INT

This function block is used to limit the rate of increase or decrease of an input value.

— ZAEHLER

KENMLIMIE.OUT

The input variables IN, ASCEND, and DESCEND are of INT type: IN is the input value, ASCEND and DESCEND
are the maximum increment and decrement values within a given time. TIMEBASE is of TIME type and used

to set a given time. When the value of RESET is TRUE, RAMP_INT will be reinitialized.

The output variable OUT is of INT type and contains the value with its rate of increase or decrease limited.

When the value of TIMEBASE is t#0s, the output OUT is independent of ASCEND and DESCEND and remains

the same as IN.

Example in CFC:

Rampe
RAMP_INT
—n ouTt—{Ausgary]
25 —ASCEMD
20 —DESCEMD
#1s —TIMEBASE
Res —{RESET ﬂ

6.20.3 RAMP_REAL

RAMP_REAL is similar to RAMP_INT in functionality, except that the inputs IN, ASCEND, and DESCEND and

the output OUT of RAMP_REAL are of REAL type.

6.21 Analog Value Processing

6.21.1 HYSTERESIS

The inputs of this function block include three INT variables: IN, HIGH, and LOW. The output OUT is of BOOL
type.
If IN is below the lower limit value LOW, OUT is TRUE. If IN is above the upper limit value HIGH, OUT is FALSE.

100

100

— RAMP INT.IN
RAMP INT.OUT

202512 (V1.1)

165

INVT Medium and Large-Scale PLC Programming Manual Basic Instructions

VAVA

Example in FBD:

HIGH

HYSTERESIS Low
— M QT — —— HYSTERESIS.IN
—HIizH HYSTERESIS.OLT
—{LCWh

TRUE

ALSE

6.21.2 LIMITALARM

This function block is used to check whether the input value is within a certain range.

The input variables IN, HIGH, and LOW are all of INT type. The output variables O, U and IL are all of BOOL
type.

If IN reaches the upper limit value HIGH, O will be set to TRUE, and when IN is below the lower limit value
LOW, U will be set to TRUE. If IN is between LOW and HIGH, IL will be set to TRUE.

Example in FBD:

LA,
LIMITALAR R
12 O = TRLE
10 U= —FALSE
5 IL— —FALSE i

202512 (V1.1) 166

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

7 Motion Control Instructions

7.1 Single Axis Instructions

Note: When using function block instructions such as MC_Power and MC_Halt, you need to add the
SM3_Basic library in the Library Manager of Invtmatic Studio platform.

7.1.1 MC_Power

MC_Power: used to enable the servo drive.

1. Instruction format

Instruction | Name Graphical Representation ST Representation
MC_Power(

Axis:=,

Enable:=,

bRegulatorOn:=,

) e Me_Power .| bDriveStart:=,
AXxis —Enahle bRegulatorReal Statef—
MC_Power —{bRegulatorOn bDriveStartResl Statel— Status=>,
enabled —bDriveStart EB;I-ZT-:
ErorDf— bRegulatorRealState=>,
bDriveStartRealState=>,
Busy=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output) Initial . .
X Name Data Type | Valid Range Description
Variable Value
. . Reference to axis, that is, an
AXis AXis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
Input Initial
Name Data Type | Valid Range Description
Variable P g Value P

) Arising edge of the input will
Execution .
Enable N BOOL TRUE, FALSE | FALSE |start the processing of the
condition .
function block

Execution
bRegulatorOn N BOOL TRUE, FALSE | FALSE |Ifitis TRUE, the axis is enabled
condition
. Execution . .
bDriveStart ., BOOL TRUE, FALSE | FALSE |High level input TRUE
condition

202512 (V1.1) 167

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Output variables

Output Name Data Type | Valid Range Initial Description
Variable yp g Value P
It becomes TRUE when the
Status Enabled BOOL TRUE, FALSE | FALSE .
Enabled state is entered
bRegulatorRe It becomes TRUE after
Enabled BOOL TRUE, FALSE | FALSE .
alState bRegulatorOn is set to TRUE
Dri R Dri | TRUE af
bDriveStartRe rive BOOL TRUE, FALSE | FALSE t bgcomes . UE after
alState enabled bDriveStart is set to TRUE
. It becomes TRUE After the
Busy Executing BOOL TRUE, FALSE | FALSE |, L .
instruction is received
It becomes TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs.
When an exception occurs, the
ErroriD Error ID SMC_ERROR - 0 .
error ID is output

3. Function description

When Enable is set to TRUE, the axis specified by Axis enters the operational state. Setting the axis state to
operational can implement axis control. When Enable is set to FALSE, the axis specified by Axis exits the
operational state. After exiting the operational state, the axis does not receive any instruction, and therefore
axis control cannot be implemented. In addition, the axis abnormally responds to motion instructions, but
the axis can execute the MC_Power and MC_Reset instructions.

7.1.2 MC_Halt

MC_Halt: used to stop the motion of a specified axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_Halt(
Axis:=,
e _falt Execute:=,
MC_Halt Deceleration:=
Instruction to | —|Rxis CEEE | o
. —Execute Busy — Jerk:=,
MC_Halt | stop an axis . .
—Deceleration CommandAborted — Done:>,
normally —Jderk Error — Busy=>,
Frrerty CommandAborted=>,
Error=>,
ErrorID=>);
2. Associated variables
Input/output variables
Input/Output . Initial ..
. Name Data Type Valid Range Description
Variable yp & Value P
. . Reference to axis, that is, an
Axis Axis AXIS_REF] " linstance of AXIS_REF_SM3
Input variables
Input Initial
i Name Data Type Valid Range Description
Variable yp & Value P
) Arising edge of the input will
Execution .
Execute N BOOL TRUE, FALSE | FALSE [start the processing of the
condition .
function block

202512 (V1.1) 168

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Input Name Data Type Valid Range Initial Description
Variable yp g Value P
Function block deceleration
Deceleration |Deceleration LREAL Positive or 0 0
speed (u/S2)
Execution Specified jerk [instruction
Jerk X u I LREAL Positive or 0 0 p- med) i uet
condition unit/S3]
Output variables
Output Initial
Name Data Type Valid Range Description
Variable yp g Value P
Instruction Itis set to TRUE after the axis
Done execution BOOL TRUE, FALSE | FALSE |instruction is executed
completed completely
Instruction . .
. Itis set to TRUE when the axis
Busy belng BOOL TRUE, FALSE | FALSE |. L i
instruction is being executed
executed
CommandAbo| Instruction Itis set to TRUE when the axis
BOOL TRUE, FALSE | FALSE |. L.
rted aborted instruction is aborted
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception occurs, the
ErroriD Error ID SMC_ERROR - 0 .
error ID is output

3. Function description

Starting this function block can stop the motion of an axis, but the execution of this function block can be

terminated when another motion axis instruction is started.

This function block can be executed only when the axis is in running state.

This function block is started at the rising edge of the input variable execution condition.

The axis state changes from DiscreteMotion during function block execution and to Standstill after the

function block

execution.

7.1.3 MC_Home

MC_Home: used to determine the home position of an axis.

1. Instruction format

Instruction

Name

Graphical Representation

ST Representation

MC_Home

Axis
homing
instruction

—Axis
— Execute
—Position

MC_Home
Done
Busy
CommandAborted
Error
ErrorlD

MC_Home(
Axis:=,
Execute:=,
Position:=,
Done=>,
Busy=>,
CommandAborted=>,
Error=>,
ErrorID=>);

202512 (V1.1)

169

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

2. Associated variables

Input/output variables

Input/Output . Initial ..
P / P Name Data Type Valid Range Description
Variable Value
. . Reference to axis, that is, an
AXis Axis AXIS_REF - - .
instance of AXIS_REF_SM3

Input variables

Input Initial
Name Data Type Valid Range Description
Variable A g Value 8
. Arising edge of the input will
Execution .
Execute o BOOL TRUE, FALSE | FALSE |start the processing of the
condition)
function block
Position
. that the . .
Position axis LREAL Data range 0 |Home position of the axis
reaches

Output variables

Output Name Data Type Valid Range LLE Description
Variable yp g Value P
Instruction Itis set to TRUE after the axis
Done execution BOOL TRUE, FALSE | FALSE |instruction is executed
completed completely
Instruction . .
. Itis set to TRUE when the axis
Busy being BOOL TRUE, FALSE | FALSE |. L .
instruction is being executed
executed
CommandAbo| Instruction Itis set to TRUE when the axis
BOOL TRUE, FALSE | FALSE |, L
rted aborted instruction is aborted
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception occurs, the
ErrorlD ErrorID | SMC_ERROR - 0 . xcept urs,
error ID is output

3. Function description

This function block is used for homing and it is started at the rising edge of the input variable execution
condition. The position that the axis of the input variable reaches is the Home position. This function block
can be executed only when the axis is in the Standstill state. In addition, the servo homing mode must be set
before the execution, and the axis must be in the Homing state during the execution.

There are two methods for setting the homing mode:
® Method 1: Manually setting servo function codes, i.e. setting P5.10 on INVT servo DA200.

® Method 2: Setting startup parameters of AX series slaves. If communication modes are used, index and
sub-index data must be set.

Item Index | Sub-index Description
Homing method | 0x6098 - Set parameters according to specific servo manuals
Origin finding 0x6099 Ox0L Generall.y the. speed is defined relatively high, reducing
speed the homing time
Zero findi
er;)p;r;dmg 0x6099 0x02 Generally the speed is defined relatively low

202512 (V1.1) 170

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Item Index | Sub-index Description
ACC/DEC for
. 0x609A - Acceleration or deceleration during homing
homing

The corresponding setting interface of the controller is as follows:

General dk add [Edit X Delete

4 MoveUp # Move Down

Line Index:Subindex

Servo Function Code
16#6098: 15200

Expert Process Data 2 16%6099:16%01
3 162509A:16300
Process Data 4 1626099:16%02
Startup Parameters

EtherCAT /0 Mapping
EtherCAT IEC Objects

Status

Information

Name Value
Homing method 1 8

Speed during search for switch 16667 32
Homing acceleration 1666667 32

Speed during search for zero 1667 32

BitLength Abort on Error

ooog

JumptolineonError Mextline Comment

0
0
0
0

ooono

4. Using the INVT DA200 servo as an example, select the homing mode (P5.10).

] 8 -l
(]
M: Homing mode
Z: Z-signal search mode
T: Extreme mode
P R: Reserved

When reaching the
limit:

T=0: An overtravel
faultis triggered.
T=1: The direction

Z: Invalid

R T y4 M
Extreme mode Z-signal search mode Homing mode
0-1 0-2 0-8
M=0: Forward rotation; the forward
T: Invalid limit switch is used as the reference
Z=0: Return to the Z signaland |point.
define it as the home position. |[M=1: Reverse rotation; the reverse
T: Invalid Z=1: Search forward for the Z limit switch is used as the reference
signal and define it as the home |point.
position. M=2: Forward rotation; the rising
Z=2: Do not search for the Z edge of the home switch is used as
signal and define the reference |the reference point.
point as the home position. M=3: Reverse rotation; the rising
edge of the home switch is used as
R the reference point.
eserved

M=4: Forward rotation; the first Z
signal is used as the home position.

Z: Invalid

M=5: Reverse rotation; the first Z
signal is used as the home position.

Z=0: Return to the Z signal and

M=6: Forward rotation; the falling

is reversed. define it as the home position. |edge of the home switch is used as
Z=1:Search forward forthe Z |the reference point.
signal and define it as the home
position. M=T: Reverse rotation; the falling
Z=2:Do not search for the Z edge of the home switch is used as
signal and define the reference |the reference point.
point as the home position.

T Invalid 7 Invalid M=8: The current position is defined

as the home position.

202512 (V1.1)

171

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

7.1.4 MC_MoveAbsolute

MC_MoveAbsolute: used to specify the destination position of absolute coordinates for positioning.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_MoveAbsolute(
Axis:=,
Execute:=,
Position:=,
Axis MC_MoveAbsolute VeIOCIty::’
— s Done[— Acceleration:=,
absolute —|Bxecute Busy}— '
MC_MoveAbs . —Pesition CommandAborted— Deceleration:=,
pOSItlon —velocity . Errorf—
OlUte —Acceleration ErrorIDp— Jerk::’
Control —Deceleration . ;
) _ —perk - Direction:=,
instruction| —1Qirection
Done=>,
Busy=>,
CommandAborted=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output . Initial ..
. / o Name Data Type | Valid Range Description
Variable Value
. . Reference to axis, that is, an
AXis Axis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
Input Initial
Name Data Type Valid Range Description
Variable P & Value P

. Arising edge of the input
Execution . .
Execute N BOOL TRUE, FALSE | FALSE |will start the processing of

condition _
the function block

Position that
Position the axis LREAL Data range 0 Absolute position of the axis
reaches
. Max. speed at which the axis
. Running
Velocity <peed LREAL Data range 0 runs to reach the
P destination position
. . Acceleration when the
Acceleration | Acceleration LREAL Data range 0 .
speed increases
. . Deceleration when the
Deceleration | Deceleration LREAL Data range 0

speed decreases

Slope change value of the
Jerk Jerk LREAL Data range 0 curve acceleration or
deceleration

202512 (V1.1) 172

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Input Name Data Type Valid Range Initial Description
Variable yp g Value P
Negative: Move backward;
Shortest: Select a direction
depending on the shortest
. distance
Negative, -
Positive: Move forward
. Shortest, .
. . Instruction . Current: Move in the current
Direction . MC_DIRECTION Positive, Shortest | . .
polarity direction
Current, .
Fastest: Automatically
Fastest
choose to move at fastest
manner
Note: This function is
valid only in rotary mode.
Output variables
Output Name Data Type | Valid Range LD Description
Variable i g Value s
Instruction Itis set to TRUE after the axis
Done execution BOOL TRUE, FALSE FALSE |instruction is executed
completed completely
Instruction . .
. Itis set to TRUE when the axis
Busy being BOOL TRUE, FALSE FALSE |. L .
instruction is being executed
executed
CommandAbo| Instruction Itis set to TRUE when the axis
BOOL TRUE, FALSE FALSE |. L
rted aborted instruction is aborted
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE FALSE .
exception occurs
When an exception occurs
ErrorlD ErrorID | SMC_ERROR - 0 xcept urs,

the error ID is output

3. Function description

This function block is the axis absolute-position instruction. Before executing this function block, the axis is
in the Standstill state. After the function block is started at the rising edge of Execute, the axis isin the

DiscreteMotion state and moves to the specified position. When Jerk is 0, the axis performs trapezoidal

acceleration/deceleration movement; when Velocity, Acceleration, Deceleration, and Jerk are not empty, it
performs S-curve acceleration/deceleration movement.

Figure 7-1 Trapezoidal Acceleration/Deceleration Action

A Speed

Target speed

ACC

AN

DEC

¥

Time

Starting absolute
position

Target absolute
position

202512 (V1.1)

173

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Figure 7-2 S-curve Acceleration/Deceleration Action

A Speed
Target speed
ACC\ DEC
Time
-
Starting absolute Target absolute
position position

4. Timing diagram
® The axis must be in the Standstill state
® The function block is triggered at the rising edge of Execute.

® For the function block, when Done is TRUE, the execution is completed; otherwise, Busy is TRUE.

Execute

Done —| —‘

Busy

CommandAborted

Error

srrorld 0 \< Error code

7.1.5 MC_AccelerationProfile

MC_AccelerationProfile: used to indicate the motion model of the time segment and
acceleration/deceleration profile.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_AccelerationProfile(
Axis:=,
TimeAcceleration:=,
MC AccelerationProfile Execute:=,
. — .
. I Done ArraySize:=,
Acceleratio —Timelcceleration Busy — .
MC_Accelerat nprofile | —[Execute Commandiborted — AccelerationScale:=,
jonProfile |. . —ArraySize Error — Offset:=,
instruction —kcecelerationScale ErrcrID— _
Done=>,
—0ff3et
Busy=>,
CommandAborted=>,
Error=>,
ErrorlD=>);

202512 (V1.1) 174

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

2. Associated variables

Input/output variables

Input/Output Valid Initial . .
P / P Name Data Type Description
Variable Range Value
. . Reference to axis, that is, an
Axis Axis AXIS_REF - - .
instance of AXIS_REF_SM3
Acceleration Acceleration time and data
time and description of the axis. The
TimeAcceleration ! . MC_TA_REF - - 'PH . X .
description acceleration data consists of
of the axis multiple groups of data

Input variables

. . Initial ..
Input Variable Name Data Type (Valid Range Value Description
) Arising edge of the input will
Execution TRUE, .
Execute . BOOL FALSE |start the processing of the
condition FALSE)
function block
) Dynamic Number of arrays used in the
ArraySize INT Data range 0 . .
array motion profile
. Comprehen . Scale factor of acceleration or
AccelerationScale| . LREAL |Positiveor0 1 L
sive factor deceleration in MC_TA_REF
Overall offset value of
Offset Offset LREAL - 0 . .
acceleration and deceleration

Output variables

. X Initial ..
Output Variable Name Data Type | Valid Range Value Description
Instruction Itis set to TRUE after the axis
Done execution BOOL TRUE, FALSE | FALSE |instruction is executed
completed completely
Instruction . .
. Itis set to TRUE when the axis
Busy being BOOL TRUE, FALSE | FALSE | . L. K
instruction is being executed
executed
Instruction Itis set to TRUE when the axis
CommandAborted BOOL TRUE, FALSE | FALSE | L
aborted instruction is aborted
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception occurs, the
ErrorlD ErrorID |SMC_ERROR - 0 .
error ID is output

3. Function description

This function block is used to specify the motion model of the time segment and acceleration/deceleration
profile. During the function block execution, the axis is in the DiscreteMotion state, and it uses the data in
TimeAcceleration. The axis must be in the Standstill state before the function block execution and in the
DiscreteMotion state during the execution. This function block is started at the rising edge of Execute. The
execution of this function block superimposes the speeds of the axis that is in the DiscreteMotion state,
which may cause system faults.

202512 (V1.1) 175

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

4. Timing diagram

Execute

Done

Busy

CommandAborted

Error

ErrorlD
0 >< Error code

7.1.6 MC_MoveAdditive

MC_MoveAdditive: used for positioning when a specified distance is superimposed to the original position of
an axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_MoveAdditive(
Axis:=,
Execute:=,
Distance:=,
_ Velocity:=,
Absolute e MC_MoveAdditive boncl y)
motion peate Busyl— Acceleration:=,
MC_MoveAdditive _ U B i Commandaborted|— Deceleration:=,
superimposition| —accleration ErrorIDf—
. . —Deceleration Jerk::,
instruction —erk
Done=>,
Busy=>,
CommandAborted=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output) Initial ..
X Name Data Type | Valid Range Description
Variable P g Value P
Axis Axis AXIS REF Reference to axis, that is, an
- instance of AXIS_REF_SM3
Input variables
. . Initial ..
Input Variable Name Data Type | Valid Range Value Description
) Arising edge of the input will
Execution .
Execute . BOOL TRUE, FALSE | FALSE |start the processing of the
condition .
function block

202512 (V1.1) 176

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

. . Initial ..
Input Variable Name Data Type | Valid Range Value Description
Position that . -
. . Superimposed position data of

Distance the axis LREAL Data range 0 .

the axis
reaches
. Max. speed at which the axis
. Running -
Velocity speed LREAL Data range 0 [|runstoreach the destination
P position
. . Acceleration when the speed
Acceleration |Acceleration| LREAL Data range 0 |
increases
Deceleration when the speed
Deceleration |Deceleration| LREAL Data range 0 P
decreases
Slope change value of the curve
Jerk Jerk LREAL Data range 0 . .

acceleration or deceleration

Output variables

. . Initial ..
Output Variable Name Data Type | Valid Range Value Description
Instruction Itis set to TRUE after the axis
Done execution BOOL TRUE, FALSE | FALSE [instruction is executed
completed completely
Instruction . .
. Itis set to TRUE when the axis
Busy being BOOL TRUE, FALSE | FALSE | . L K
instruction is being executed
executed
Instruction Itis set to TRUE when the axis
CommandAborted uet BOOL TRUE, FALSE | FALSE |, ! L W X
aborted instruction is aborted
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception occurs, the
ErroriD Error ID SMC_ERROR - 0 .
error ID is output

3. Function description

The startup instruction is Execute, the rising edge triggers the function block, and Distance specifies the
superimposed data of the axis. If the running state of this function block is DiscreteMotion, the
CommandAbort values of other instructions are set; in the standstill state, this instruction can run
independently to achieve relative positioning requirements; if Acceleration or Deceleration is zero, the
instruction execution is abnormal, but the axis is in the DiscreteMotion state; When Jerk is 0, the axis
performs trapezoidal acceleration/deceleration movement; when Velocity, Acceleration, Deceleration, and
Jerk are not empty, it performs S-curve acceleration/deceleration movement.

202512 (V1.1) 177

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Figure 7-3 Trapezoidal Acceleration/Deceleration Action

A Speed

Target speed

RN e

Time
Starting absolute Target absolute
position position
Figure 7-4 S-curve Acceleration/Deceleration Action
A Speed
Target speed
ACC\ DEC
Time
>
Starting absolute Target absolute
position position
4. Timing diagram
Example
MoveAdditive - Example
First Second
MC_M ovedhbsolute | I_’E MC_Movesdditive
Ty _ :P.IH: aE D —_—_— E —
GO — BEAE pone ! ! Erecie more ' Fhsi
G000 ot pagtion Commandabored ' — 000 - DistENce Commad Abared : -
3000 o e Bty Erpr | = 2000) ekl Emor | —
100 — ! Aczk @b ErEmD | — 100 | Acce Bt EmoriD | —
100 —) Decz ke ration 100 = ! Dece ke @tba
0 ot ek 0 - kK

Teit

202512 (V1.1)

178

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Timing description

Second motion interrupts first motion

First 4 Sequence of two complets motions
_
o . e -
T bl
1
Done . P -t
| a2
Commandaborted N
o -
Second
T
Ted
Fatall
? 5 -
Finish . o -
2
Motion
3000 — o
o — AN
“elocity
o E2) -1
10000
soom — e /
P osition
o e -~ -

7.1.7 MC_MoveRelative

MC_Move Relative: used for positioning by specifying the movement distance from the current position.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_MoveRelative(
Axis:=,
Execute:=,
Distance:=,
. MC_MoveRelative Velocity:=,
AXxis — x5 Donef— .
relative —{Execute Busyl— Acceleratlon:Z,
MC_MoveRelative| . | et Commandaborted|— Deceleration:=,
POSltlonlng —Bcceleration ErrorlDf— o
. . —Deceleration Jerk.—,
instruction| 5.
Done=>,
Busy=>,
CommandAborted=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output) Initial . .
X Name Data Type Valid Range Description
Variable Value
. . Reference to axis, that is, an
AXis AXis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
Input Name Data Type | Valid Range Initial Description
Variable P g Value S
. Arising edge of the input will
Execution .
Execute - BOOL TRUE, FALSE | FALSE |start the processing of the
condition)
function block (FALSE—TRUE)
Relative
Distance position of LREAL Data range 0 |Thedatais a relative position
motion

202512 (V1.1)

179

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Input Name Data Type | Valid Range Initial Description
Variable P & Value P
) Max. speed at which the axis
. Running o
Velocity speed LREAL Data range 0 |runstoreach the destination
P position
. . Acceleration when the speed
Acceleration | Acceleration LREAL Data range 0o |
increases
. . Deceleration when the speed
Deceleration | Deceleration LREAL Data range 0
decreases
Slope change value of the curve
Jerk Jerk LREAL Data range 0 i)
acceleration or deceleration
Output variables
Output Initial
Name Data Type | Valid Range Description
Variable yp & Value P
Instruction Itis set to TRUE after the axis
Done execution BOOL TRUE, FALSE | FALSE |instruction is executed
completed completely
Instruction . .
) Itis set to TRUE when the axis
Busy being BOOL TRUE, FALSE | FALSE |, L. .
instruction is being executed
executed
CommandAbo | Instruction Itis set to TRUE when the axis
BOOL TRUE, FALSE | FALSE |, L.
rted aborted instruction is aborted
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception occurs, the
ErroriD Error ID SMC_ERROR - 0 .
error ID is output

3. Function description

The axis must be in the Standstill state before the function block execution and in the DiscreteMotion state
during the execution. Pay attention to the axis state during the execution to prevent other instructions from

interrupting the instruction execution of the axis. The startup instruction is Execute, and the rising edge

(FALSE—TRUE) triggers the function block. The startup instruction can repeatedly make the rising edge valid

when the axis is in the DiscreteMotion state, which always refreshes the position. When Acceleration or

Deceleration is 0, the instruction execution is abnormal, but the axis is in the DiscreteMotion state.

Figure 7-5 Trapezoidal Acceleration/Deceleration Action

A Speed

ACC

R}

Target speed

DEC

r's

Time

Starting absolute

position

Target absolute

position

202512 (V1.1)

180

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Figure 7-6 S-curve Acceleration/Deceleration Action

A Speed

Target speed

ACC

R}

DEC

r's

Time

Starting absolute
position

4. Timing diagram

Execute

>

Target absolute

position

Done

Busy

CommandAborted

Error

ErrorlD

0 \<

Error code

This function block is triggered at the rising edge of Execute. When Busy is set, the function block is being
executed. After the execution is completed, Done is set.

7.1.8 MC_MoveSuperimposed

MC_MoveSuperlmposed: used to superimpose speed and position data on the speed and position data in
the running instruction, which brings no change to the entire original instruction execution time model.

1. Instruction format

Instruction Name

Graphical Representation ST Representation

Relative motion
MC_MoveSuperlmposed|superimposition
instruction

MC_MoveSuperimposed(
Axis:=,
Execute:=,
Distance:=,
VelocityDiff:=,

MC_MoveSuperImposed
s
Execute

\VelocityDiff
Acceleration
Deceleration
Jerk

Distance CommandAborted

Done|
Busy]

Acceleration:=,

Deceleration:=,
Jerk:=,

Errar|
ErrorID|

Done=>,

Busy=>,
CommandAborted=>,
Error=>,

ErrorlD=>);

202512 (V1.1)

181

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

2. Associated variables

Input/output variables

Input/Output . Initial ..
P / P Name Data Type | Valid Range Description
Variable Value
. . Reference to axis, that is, an
AXis Axis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
. . Initial ..
Input Variable Name Data Type | Valid Range Value Description
Arising edge of the input
Execution ill start the processing of
Execute X u I BOOL TRUE, FALSE | FALSE w . P g
condition the function block
(FALSE—TRUE)
Relative . .
. . The datais a relative
Distance position of LREAL Data range 0 .
. position
motion

Superimposition Superimposition speed for

VelocityDiff LREAL Data range 0 . .
speed axis running
. . Acceleration when the
Acceleration Acceleration LREAL Data range 0 .
speed increases
. . Deceleration when the
Deceleration Deceleration LREAL Data range 0

speed decreases

Slope change value of the
Jerk Jerk LREAL Data range 0 curve acceleration or
deceleration

Output variables

Initial

Output Variable Name Data Type | Valid Range Value Description
Instruction Itis set to TRUE after the axis
Done execution BOOL TRUE, FALSE | FALSE |instruction is executed
completed completely
Instruction . .
. Itis set to TRUE when the axis
Busy being BOOL TRUE, FALSE | FALSE |, L. .
instruction is being executed
executed
Instruction Itis set to TRUE when the axis
CommandAborted uet BOOL TRUE, FALSE | FALSE |, ! L W X
aborted instruction is aborted
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE)
exception occurs
When an exception occurs, the
ErroriD ErrorID |SMC_ERROR| - 0

error ID is output

3. Function description

This function block is the position and speed superimposition instruction, which is started at the rising edge
of Execute. VelocityDiff and Distance are superimposed to the speed and position of other instructions. In
the motion mode, MC_MoveSuperlmposed can be superimposed onto any other instruction. This function
block can solve the error compensation for the clearance between the belt and gear, which can ensure
motion consistency. To execute the function block, you need to set the parameter superimposition position.

202512 (V1.1) 182

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Figure 7-7 Trapezoidal Acceleration/Deceleration Action

A Speed

Target speed

ACC

RN e

DEC

Time
Starting absolute Target absolute
position position
Figure 7-8 S-curve Acceleration/Deceleration Action
A Speed
Target speed
ACC\ DEC
Time
-
Starting absolute Target absolute
position position
4. Timing diagram
Example
MoveSuperimposed - Example
First Second
MC_hdoweR al ative MG _hdoveSuper mp
My A — I.MB Axls IM! Al —
G0 _Rel —oo! Emalk e — oo0_Sp - Bealk bore | —
SO0~ Dl Bree cmu.m:ru: — om —o) Dislarce -:mmw:rzu: -
W el Bra — o — ' velod o Eml -
o ! Aowkralon Emorln . — s = Acderakn Brgln |, -
100 —o) Deceralon s - Decelealon
om —o derk om = derk

202512 (V1.1) 183

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Timing description
Eirst 4

Go_Rel o

1

i

Y

Done

Second

1 i f | |
Go_Sup g 1
‘ i [l
Lone o i B

{note1]

Y

k.

CommandAborted o

Motion

el ocity

-BHHE

Distance qoq [

som e

7.1.9 MC_MoveVelocity

MC_MoveVelocity: used to simulate speed control by using the servo drive position control mode.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_MoveVelocity(
Axis:=,
Execute:=,
Velocity:=,
T Acceleration:=,
Speed e e Deceleration:=,
MC_MoveVelocity| control Tyelodity | Commendaborted}— Jerk:=,
instruction :?:rie'erm” el Direction:=,
== InVelocity=>,

Busy=>,
CommandAborted=>,
Error=>,
ErrorID=>);

2. Associated variables

Input/output variables

In|:luatr/i:;lt:ut Name Data Type | Valid Range I\;:::: Description
. . Reference to axis, that is, an
AXxis AXxis AXIS_REF - - .
instance of AXIS_REF_SM3

202512 (V1.1) 184

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Input variables

. . Initial . L.
Input Variable Name Data Type | Valid Range Value Description
. Arising edge of the input will
Execution)
Execute . BOOL TRUE, FALSE | FALSE |start the processing of the
condition)
function block (FALSE—>TRUE)
. Running . .
Velocity LREAL Data range 0 |Specified speed for running
speed
. . Acceleration when the speed
Acceleration |Acceleration LREAL Data range 0 |
increases
Deceleration when the speed
Deceleration |Deceleration LREAL Data range 0 P
decreases
Slope change value of the
Jerk Jerk LREAL Data range 0 |curve acceleration or
deceleration
. Positive,
. . Running
Direction . . MC_Direction| Negative, |Current|Runningdirection
direction
Current
Output variables
. . Initial .
Output Variable Name Data Type | Valid Range Value Description
Instruction Itis set to TRUE after the axis
Done execution BOOL TRUE, FALSE | FALSE |instruction is executed
completed completely
Instruction . .
) Itis set to TRUE when the axis
Busy being BOOL TRUE, FALSE | FALSE | S
instruction is being executed
executed
Instruction Itis set to TRUE when the axis
CommandAborted BOOL TRUE, FALSE | FALSE | L
aborted instruction is aborted
Itis set to TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE ! . W
exception occurs
When an exception occurs, the
ErrorlD ErrorID |SMC_ERROR - 0 .
error ID is output

3. Function description

This function block is triggered at the rising edge of Execute. The drive performs speed control according to

the value of Velocity. InVelocity indicates that the running speed in the function block has reached the
specified value.

4. Timing diagram

Example

First

MoveVelocity - Example

I_’E MC_Moveveloc ity rl
WAy - TIE LY

| Emcik

MO0 =, Ve Camma yaAparkcd : -
— | Aces eratin Emar | —
— ekt Emip ! -
PR Dot
p .

Test —

oR

Second

MC_ Mo el elocity

: Execite ||v|m: — FMEL
! Weloty commardaporrd | —
e A=) Eamor =
! Dece Eratinn Emwin | -
| dek |
| pimcton

202512 (V1.1)

185

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Timing description
First

GO

In‘elocity

Cam mand
Aported

Finish =
Invelocity

Motion

Welocity

7.1.10 MC_Position

1 4

o ! |

Profile

MC_PositionProfile: used to indicate the motion model of the time segment and position profile.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_PositionProfile(
Axis:=,
TimePosition:=,
Execute:=,
. MC_PositionProfile ArraySize:=,
Position | s Donef— .
. . . — TimePosition Busy[— PositionScale:=,
MC_PositionProfile| profile |—{|eeate CommandAborted|—
ctruction | Thmts Smp | Offsets,
instruction | —fesi Done=>,
Busy=>,
CommandAborted=>,
Error=>,
ErrorID=>);
2. Associated variables
Input/output variables
Input/Output . Initial . .
. Name Data Type | Valid Range Description
Variable ol & Value s
. . Reference to axis, that is, an
AXis AXxis AXIS_REF - - .
instance of AXIS_REF_SM3
L Running time and position
Running time Lo .
. - . data description of the axis.
TimePosition | and position [MC_TP_REF - - . .
. The data consists of multiple
description
groups of data

202512 (V1.1)

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Input variables

. . Initial ..
Input Variable Name Data Type | Valid Range Value Description
Arising edge of the input will
Execution start the processing of the
Execute . BOOL TRUE, FALSE | FALSE .
condition function block
(FALSE—TRUE)
. . Number of arrays used in the
ArraySize Array size INT Data range 0

motion profile

Comprehensive Position scaling factor in

PositionScale LREAL Positive or 0 0

factor MC_TP_REF
Overall offset value of the
Offset Offset LREAL - 0 .
position
Output variables
. . Initial ..
Output Variable Name Data Type | Valid Range Value Description
Instruction Itis set to TRUE after the axis
Done execution BOOL TRUE, FALSE | FALSE [instruction is executed
completed completely
Instruction . .
. Itis set to TRUE when the axis
Busy being BOOL TRUE, FALSE | FALSE | L .
instruction is being executed
executed
Instruction Itis set to TRUE when the axis
CommandAborted BOOL TRUE, FALSE | FALSE |. L
aborted instruction is aborted
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception occurs, the
ErrorlD ErrorID |SMC_ERROR - 0 . xcept urs,
error ID is output

3. Function description

This function block is used to specify the motion model of the time segment and position profile, using the
data in TimePosition. Before executing this function block, the axis is in the Standstill state. This function
block is triggered at the rising edge of Execute. The axis is in the DiscreteMotion state during the function
block execution.

4. Timing diagram

Execute

Done —| —‘

Busy

CommandAborted

Error

Frrorld 0 \< Error code

202512 (V1.1) 187

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

7.1.11 MC_ReadActualPosition

MC_ReadActualPosition: used to read the actual position of the drive and save it to a user-defined variable.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_ReadActualPosition(
Axis:=,
Actual MC_ReadActualPosition Enable:=,
MC_ position :éﬁi:ble \éﬂj: Valid=>,
ReadActualPosition | reading ErrorD] Busy=>,
instruction — Error=>,
ErrorlD=>,
Position=>);

2. Associated variables

Input/output variables

Input/Output . Initial ..
P / P Name Data Type | Valid Range Description
Variable Value
. . Reference to axis, that is, an
AXxis AXxis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
.) Initial ..
Input Variable Name Data Type | Valid Range Value Description

. Arising edge of the input will
Execution .
Enable condition BOOL TRUE, FALSE | FALSE |start the processing of the
function block (FALSE—TRUE)

Output variables

Output Name Data Type (Valid Range Initial Description
Variable P g Value 3
Obtainable TRUE Itis setto TRUE when the drive
Valid flag of position BOOL FALSF: FALSE |position can be obtained
data correctly.
Instruction TRUE, Itis set to TRUE when the axis
Busy . BOOL FALSE |, L .
being executed FALSE instruction is being executed
TRUE, Itis set to TRUE when an
Error Error flag BOOL FALSE .
FALSE exception occurs
When an exception occurs, the
ErrorlD Error ID SMC_ERROR - 0 .
error ID is output
. Obtained axis Axis . . .
Position . LREAL . 0 |Axis position data that is read
position position

3. Function description

This function block is triggered at the rising edge of Execute and it can read the axis position value. When
Valid is TRUE, the read position value is valid. This function block can be repeatedly called, and the invoking
does not affect the other.

202512 (V1.1) 188

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

4. Timing diagram

1
Enable0 J _

Valid (1)_|_ _________________ 1

Busy (lJ

Position

7.1.12 MC_ReadBoolParameter

MC_ReadBoolParameter: used to read the bit parameters of the drive axis and save them to user-defined
variables.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_ReadBoolParameter(
Axis:=,
Lo Enable:=,
Axis bit MC_ReadBoolParameter
— s valid— ParameterNumber:=,
MC_ReadBoolPara | parameter | —gnable Busy|— .
. —ParameterNumber Errorf— Val|d:>,
meter reading ErrorID—
. . Valuef— Busy:>,
instruction
Error=>,
ErrorlD=>,
Value=>);
2. Associated variables
Input/output variables
Input/Output . Initial . .
. Name |Data Type| Valid Range Description
Variable Value
. . Reference to axis, that is, an
Axis Axis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
) Data) Initial .
Input Variable Name Valid Range Description
Type Value
Execution When it is set to TRUE, this
Enable - BOOL |TRUE,FALSE| FALSE . .
condition function block is started
Axis
Access index, sub-index, and
ParameterNumber |parameter| DINT - 0 .
number of the axis parameter
number
Note:

® ParameterNumber (DINT) = -DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24) (Data
length in the object dictionary) + SHL(UINT_TO_DWORD(uilndex), 8) (Index in the object dictionary-16
bits) + usisublndex (Sub-index in the object dictionary-8 bits).

® ysiDatalLength: Fillin according to the number of bytes: Byte 1 is 16#01; byte 2 is 16#02; byte 4 is 16#04,
and so on.

202512 (V1.1) 189

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Output variables

Output Name Data Type |Valid Range Initial Description
Variable P g Value P
. Obtainable flag of It is set to TRUE when the drive
Valid . BOOL TRUE, FALSE| FALSE | . .
bit data bit can be obtained correctly.
Instruction being It is set to TRUE when the axis
Busy BOOL TRUE, FALSE| FALSE |, L .
executed instruction is being executed
Itis setto TRUE when an
Error Error flag BOOL |TRUE, FALSE| FALSE | = o W
exception occurs
When an exception occurs, the
ErrorlD Error ID SMC_ERROR - 0 .
error ID is output
Obtained axis The value of the parameter
Value - BOOL TRUE, FALSE | FALSE .
position ParameterNumber is read

3. Function description

Bit data status is read from the drive by executing MC_ReadBoolParam, which is valid when Enable is TRUE.
This function block can be repeatedly executed without affecting each other. When Valid is TRUE, the bit
status data is valid; when Busy is TRUE, the function block is being executed.

4. Timing diagram

Enableé_l_ _________________ J_
1

Valid 0_|_ _________________ J_

Busy oV []

Value

7.1.13 MC_ReadAXxisError

MC_Read AxisError: used to read axis error information and save it to user-defined variables.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_ReadAxisError(
Axis:=,
Enable:=,
Valid=>,
Busy=>,
Error=>,
ErrorlD=>,
AxisError=>,
AxisErrorID=>,

SWEndSwitchActive=>);

MC_ReadAxisError

. —Axi
Axis error T,

reading
instruction

valid

Busy

Error

ErrorID

BxisError
AxisErrorID
SWEndSwitchActive

MC_ReadAxisError

202512 (V1.1) 190

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

2. Associated variables

Input/output variables

Input/Output . Initial ..
P / P Name Data Type | Valid Range Description
Variable Value
. . Reference to axis, that is, an
Axis AXis AXIS_REF - - .
instance of AXIS_REF_SM3

Input variables

Input Initial
Name Data Type | Valid Range Description
Variable yp g Value P
Execution When it is set to TRUE, this
Enable . BOOL TRUE, FALSE | FALSE . .
condition function block is started

Output variables

Output . Initial
. N D T V R
Variable ame ata Type | Valid Range Value

Description

Itis set to TRUE when the drive
Error data

Valid . BOOL TRUE, FALSE | FALSE |position can be obtained
obtaining flag

correctly.
Instruction
Iti TRUE wh h i
Busy being BOOL | TRUE, FALSE | FALSE | 'S Setto TRUE when the axis
instruction is being executed
executed
Itis setto TRUE wh
Error Error flag BOOL | TRUE, FALSE | FALSE | '*>€'%© whenan
exception occurs
When an exception occurs, the
ErrorlD ErrorID SMC_ERROR| TRUE, FALSE | FALSE

error ID is output

When an error is read, the
corresponding flag is set
AxisErrorlD Axis error ID DWORD - 0 The axis error ID is read

The soft limit switch status is
BOOL TRUE, FALSE | FALSE [checked during instruction
reading

AxisError | Axis error flag BOOL TRUE, FALSE | FALSE

SWEndSwitch Soft limit
Active switch valid

3. Function description

This function block is used to read axis error information, and it is valid when Enable is TRUE. When Valid is
TRUE, AxisError and AxisErrorID are valid data values; when Busy is TRUE, the current function block is being
executed. This function block can be repeatedly executed without affecting each other.

7.1.14 MC_ReadStatus

MC_ReadStatus: used to read axis status data and save it to user-defined variables.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_ReadStatus MC_ReadStatus(
—Axis Validf— TP
—Enable Busyf— AXIS.—,
Errarp— —
il Enable:=,
. Disabled}— Va“d:>
Axis status Errorstopf— B ’
. Stoppingf— usy=>
MC_ReadStatus| reading Standstillf— y="
. . DiscreteMotionf— Erro r=>,
instruction ContinuousMotionf— -
SynchronizedMotionf— ErrorID—>,
Homingf— . _
ConstantVelocityf— D|Sabled—>,
Acceleratingb— _
Decelerating— Erro rStOp—>,
FBErrorQccuredf— Stopping=>
3

202512 (V1.1) 191

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Instruction Name Graphical Representation ST Representation
StandStill=>,
DiscreteMotion=>,
ContinuousMotion=>,
SynchronizedMotion=>,
Homing=>,
ConstantVelocity=>,
Accelerating=>,
Decelerating=>,
FBErrorOccured=>);

2. Associated variables

Input/output variables

Input/Output . Initial . ..
P / P Name Data Type |Valid Range Description
Variable Value
. . Reference to axis, that is, an
AXis AXis AXIS_REF - - .
instance of AXIS_REF_SM3

Input variables

. . Initial . .
Input Variable Name Data Type | Valid Range Value Description
Execution When it is set to TRUE, this
Enable ... BOOL TRUE, FALSE | FALSE . .
condition function block is started
Output variables
. . Initial e
Output Variable Name Data Type |Valid Range Value Description

Itis set to TRUE when the drive
Error data

Valid . BOOL |TRUE, FALSE| FALSE |position can be obtained
obtaining flag

correctly.
Instruction
It TRUE when the axi
Busy being BOOL |TRUE, FALSE| FALSE [¢ 'S Setto TRUE when the axis
instruction is being executed
executed
Itis set to TRUE wh
Error Error flag BOOL |TRUE, FALSE| FALSE | '>>€tt° when an
exceptlon OCcCurs
Wh i h
ErroriD ErrorID |SMC_ERROR - 0 en an exception occurs, the

error ID is output
Itis set to TRUE when the axis is

Disabled Axis disabled BOOL |TRUE, FALSE| FALSE

disabled
Axi Itis set to TRUE when th isi
Errorstop XIS error BOOL |TRUE, FALSE| FALSE | - > >¢t 10 TRVEWhenthe axisis
status running abnormally
AXxis i Iti TRUE wh h isi
Stopping Xis in stop BOOL TRUE, FALSE| FALSE .t is set to TRUE when the axis is
process in the stop process
Standard Itis set to TRUE when the axis is
StandsStill . BOOL [TRUE, FALSE| FALSE |in the StandStill state (able to
status of axis
run)
Discrete Itis set to TRUE when the axis is
DiscreteMotion | motion status BOOL TRUE, FALSE| FALSE |. . .
. in the DiscreteMotion state
of axis
. .| Continuous . ..
ContinuousMoti motion status BOOL |TRUE, FALSE| FALSE !t |ssettoTRUE when.the axis is
on of axis in the ContinuousMotion state

202512 (V1.1) 192

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

. . Initial ..
Output Variable Name Data Type |Valid Range Value Description
SvnchronizedMo Synchronous Itis set to TRUE when the axis is
y tion running status BOOL |TRUE, FALSE| FALSE |in the SynchronizedMotion
of axis state
. Homi tat Itis setto TRUE when th isi
Homing OMINEStatS| BooL |TRUE, FALSE| FALSE |, ‘> 5€t 0 TRUE whenthe axisis
of axis in the Homing state
Axi i Itis setto TRUE when th i
ConstantVelocity| > """"& | BOOL |TRUE, FALSE| FALSE | =S¢t 10 TRVE Whenthe axis
speed reached reaches the running speed
A i Iti TRUE wh h isi
Accelerating | ACCeleration | g6 |rRuE, FALSE| FALSE | 1S Set to TRUE when the axisis
status of axis in the Accelerating state
Dccelerating Deceleratlo.n BOOL |TRUE, FALSE| FALSE !t |ssettoTRUE'When the axis is
status of axis in the Dccelerating state
Axis function It is set to TRUE when the axis
FBErrorOccured BOOL |TRUE, FALSE| FALSE |function block encounters an
block error flag error

3. Function description

Axis status is read by executing MC_ReadStatus, which is valid when Enable is TRUE. This function block can

be repeatedly executed without affecting each other. To execute the function block, set Enable to TRUE.

When Valid is TRUE, the read value is valid; when Busy is TRUE, the function block is being executed.

7.1.15 MC_ReadParameter

MC_ReadParameter: used to read drive axis parameters and saves them to user-defined variables.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_ReadParameter(
Axis:=,
. Enable:=,
AXis MC_ReadBoolParameter
— s valid— ParameterNumber:=,
parameter —{Enable BusyfF— .
MC_ReadParameter . —{ParameterNumber Errorf— Val|d:>’
read|ng ErrorIDf—
. . Valuef— Busy:>’
instruction
Error=>,
ErrorlD=>,
Value=>);
2. Associated variables
Input/output variables
Input/Output . Initial . ..
o / o Name Data Type | Valid Range Description
Variable Value
. . Reference to axis, that is, an
AXxis AXis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
. . Initial . .
Input Variable Name |Data Type| Valid Range Value Description
Execution When it is set to TRUE, this
Enable .. BOOL TRUE, FALSE | FALSE . .
condition function block is started
Axis
Access index, sub-index, and
ParameterNumber| parameter DINT - 0 .
number of the axis parameter
number

202512 (V1.1)

193

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Note:

ParameterNumber (DINT) = -DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24) (Data

length in the object dictionary) + SHL(UINT_TO_DWORD(uilndex), 8) (Index in the object dictionary-16
bits) + usisubIndex (Sub-index in the object dictionary-8 bits).

and so on.

Output variables

usiDataLength: Fill in according to the number of bytes: Byte 1 is 16#01; byte 2 is 16#02; byte 4 is 16#04,

Output Name Data Type Valid Initial Description
Variable P Range | Value 8
. Obtainable flag of TRUE, It is set to TRUE when the read
Valid BOOL FALSE . .
data FALSE value is valid.
Instruction being TRUE, Itis set to TRUE when the axis
Busy BOOL FALSE |. . .
executed FALSE instruction is being executed
TRUE, Itis set to TRUE when an
Error Error flag BOOL FALSE .
FALSE exception occurs
When an exception occurs, the
ErroriD Error ID SMC_ERROR - 0 .
error ID is output
. TRUE, The value of the parameter
Value Obtained value BOOL FALSE .
FALSE ParameterNumber is read

3. Function description

Data status is read from the drive by executing MC_ReadParameter, which is valid when Enable is TRUE. The
function block can be repeatedly executed without affecting each other. When Valid is TRUE, the read Valid
value is valid; when Busy is TRUE, the function block is being executed.

4. Timing diagram

Enable 1
0

1
Valid 0

Busy é

Value

7.1.16 MC_Reset

MC_Reset: used to reset all errors of an axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_Reset(
) MC_Reset Axis:=,

Axis error | _{axs Daonef— Execute:=,
MC_Reset reset Sz Er”ri‘; — Done=>,
instruction ErroriDf— Busy=>,
Error=>,

ErrorlD=>);

202512 (V1.1)

194

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

2. Associated variables

Input/output variables

Input/Output . Initial L.
Name Data Type | Valid Range Description
Variable A g Value 8
Axis Axis AXIS REF Reference to axis, that is, an
i Xi - -
X - instance of AXIS_REF_SM3
Input variables
. . Initial .
Input Variable Name Data Type |Valid Range Value Description
) Arising edge will start the
Execution . .
Execute . BOOL TRUE, FALSE| FALSE |processing of the function
condition
block
Output variables
; . Initial .
Output Variable Name Data Type |Valid Range Value Description
Instruction TRUE It is set to TRUE after the axis
Done execution BOOL FALSF: FALSE |instruction is executed
completed completely
Instruction
B b u I BOOL TRUE, FALSE Itis set to TRUE when the axis
us ein
y & FALSE instruction is being executed
executed
TRUE, Itis set to TRUE when an
Error Error flag BOOL FALSE .
FALSE exception occurs
When an exception occurs, the
ErrorlD Error ID SMC_ERROR - 0 .
error ID is output

3. Function description

This function can change the axis status from Errorstop to Standstill when the axis is in normal
communication. If the axis cannot be reset from the Errostop state and Axis.bCommunication is FALSE, you
must re-establish the communication between the master and slave axes.

4. Timing diagram

Execute
Done
Busy —‘
Error JAXis communication
error, etc. L
Error
ErrorlD 0 code

202512 (V1.1) 195

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

7.1.17 MC_Stop

MC_Stop: used to instruct an axis to decelerate to stop.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_Stop(
Axis:=,
Execute:=,

MC_Stop
Lxis Dione|
Execute Busy
Deceleration Error
Jerk ErrorID

Deceleration:=,
Jerk:=,
Done=>,
Busy=>,
Error=>,
ErrorID=>);

Axis stop

MC_Sto
—>top instruction

2. Associated variables

Input/output variables

Input/Output Valid Initial .
X Name Data Type Description
Variable Range | Value
. . Reference to axis, that is, an
AXxis Axis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
. Data) Initial .
Input Variable Name Valid Range Description
Type Value
. Arising edge will start the
Execution . .
Execute condition BOOL | TRUE, FALSE | FALSE |processing of the function block
(TRUE—FALSE)
. . . Function block deceleration
Deceleration | Deceleration| LREAL | Positiveor0 0
speed (u/S2)
Specified jerk [instruction
Jerk Jerk LREAL | Positive or0Q 0 p. ified jerk[i vt
unit/S3]
Output variables
Output Initial
Name Data Type | Valid Range Description
Variable yp 5 Value P
Instruction It is set to TRUE after the axis
Done execution BOOL TRUE, FALSE | FALSE |instruction is executed
completed completely
Instruction . .
. Itis set to TRUE when the axis
Busy being BOOL TRUE, FALSE FALSE |. L .
instruction is being executed
executed
Itis setto TRUE when a
Error Error flag BOOL TRUE, FALSE FALSE I . whenan
exception occurs
When an exception occurs, the
ErroriD Error ID SMC_ERROR - 0 .
error ID is output

3. Function description

This function block is used to stop the motion of an axis thatis in normal running. It does not take effect to
the axis when itis in the Stopping state.

202512 (V1.1) 196

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

If the axis is in the Stopping state, Execute is FALSE, and Done is TRUE, and the axis status changes to
Standstill. The function block is started at the rising edge of Execute. If Busy is TRUE when MC_Stop is in the
execution process, the restart of MC_Stop will cause the axis to enter the Errorstop state. When the MC_Stop
(forced stop) instruction is started, the instruction in execution changes to execute CommandAborted
(execution aborted).

4. Timing diagram

Example

Flag bit difference in executing MC_MoveVelocity and MC_Stop:

FE1 EB2
MC_Mowved elocity MC_Stop
Axiz 1 — Axiz Invdocity | Inve_1 Axiz 1 — Axs Dare | Done_2
Exe_1 - Execte Busy |- Exe_ 2 - Execute Busy
50 H Velocity Commandiboted |- &bot_1 A - Deceleration Ewor |-
10 - Acceleration Emwor | Error_1 0 4 Jerk ErrorlD |-
10 - Deceleration Emoil |-
0 derk
1 < Diredtion
— EB1 L a » - b »
114 HE H H
Exe 1 0 | | | | I .t
Y e s s o —
Abort_1 1 ’ """"" ' """" ‘ """"""""""""""""" "‘ """"""
Tl T T i — t
I s et s R S S
_@ H i H H i
1 b ———————————————————— - - e e e e
Exe 2 0 | 1 -t
1 b ————————————————— e e e e e
_I]nne_z 0 | 1 -t
2 r]] I
Velocity
Axis_1

7.1.18 MC_VelocityProfile

MC_VelocityProfile: used to indicate the motion model of the time segment and speed profile.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_VelocityProfile(
Axis:=,

TimeVelocity:=,
Execute:=,

MC_VelocityProfile ArraySize:=,
[Axis Dong
TimeVelocity Busy,
Execute CommandAborted|

Speed
MC_VelocityProfile | profile
instruction

VelocityScale:=,
Offset:=,
Done=>,

[ArraySize Error|
VelocityScale ErrorlD)|
Offset

Busy=>,
CommandAborted=>,
Error=>,

ErrorlD=>);

202512 (V1.1) 197

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

2. Associated variables

Input/output variables

Input/Output Valid Initial . .
P / P Name Data Type Description
Variable Range Value
. . Reference to axis, that is, an
Axis AXis AXIS_REF - - .
instance of AXIS_REF_SM3
Runnin
. & Running time and speed data
time and e .
. . description of the axis. The
TimeVelocity speed MC_TV_REF - -) .
L data consists of multiple
description rouDs of data
of axis group
Input variables
Input Variable Name Data Type valid T Description
P yP Range Value P
. Arising edge will start the
Execution TRUE, . .
Execute o BOOL FALSE |processing of the function
condition FALSE
block
. Dynamic Number of arrays used in the
ArraySize INT - 0 . .
array motion profile
. Speed - .
VelocityScale LREAL Positive or 0 1 Speed scaling factor
factor
Overall offset value of the
Offset Offset LREAL ; 0 v val
speed
Output variables
Output Name Data Type | Valid Range Initial Description
Variable P g Value P
Instruction Itis set to TRUE after the
Done execution BOOL TRUE, FALSE | FALSE |axis instruction is executed
completed completely
Instruction Itis setto TRUE when the
Busy being BOOL TRUE, FALSE | FALSE |axisinstruction is being
executed executed
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE ! . W
exception occurs
When an exception occurs
ErrorlD Error ID SMC_ERROR - 0 X, PH urs,
the error ID is output

3. Function description

This function block is used to specify the motion model of the time segment and speed profile. The axis

running mode is Continuous Motion, and the function block uses the data in TimeVelocity. The axis must be
in the Standstill state before the function block execution and in the DiscreteMotion state during the
execution. This function block is started at the rising edge of Execute. This function block can be repeatedly
executed when the axis is in the DiscreteMotion state. TimeVelocity is of the MC_TV_REF data type.

MC_TV_REF is described as follows:

Member

Type

Initial Value

Description

Number of profile path
segments

Number_of_pairs INT 0

202512 (V1.1) 198

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Member Type Initial Value Description
Absolute motion (TRUE) or
IsAbsolute BOOL TRUE : .
relative motion (FALSE)
MC_TV_Array ARRAY[1...N] OF SMC_TV - Data arrays of time and speed
SMC_TVis described as follows:
Member Type Initial Value Description
delta_time TIME TIME#0ms Time of a speed segment
Velocity LREAL 0 Speed that is recorded currently

Note: The entire speed process represents the S curve with acceleration and deceleration, and the speed
of each profile segment is calculated by superimposition; during repeated running, the speed is also

superimposed to avoid the occurrence of speed limit exceeding; before repeated running, the axis status

must be set to Standstill.

4. Timing diagram

Execute

Done

Busy

CommandAborted

Error

ErrorlD

X

Error code

7.1.19 MC_WriteBoolParameter

MC_WriteBoolParameter: used to set the bit parameters of the drive axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_WriteBoolParameter(
Axis:=,
L Execute:=,
) Axis bit g MC_WriteBoolParameter 5 | ParameterNumber:Z,
MC_WriteBool | parameter Ex's .
—{Execute Busyf— Value:=
Parameter Sett]ng —{ParameterNumber Errorf— ’
. ‘ —{Value ErrorlDf— Done=>,
instruction
Busy=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output Data . Initial .
o / o Name Valid Range Description
Variable Type Value
. . Reference to axis, that is, an
AXis AXis AXIS_REF - .
instance of AXIS_REF_SM3

202512 (V1.1)

199

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Input variables

. Data . Initial .
Input Variable Name Valid Range Description
Type Value
Execution TRUE, When it is set to TRUE, this
Enable . BOOL FALSE . .
condition FALSE function block is started
Axis
X Access index, sub-index, and
ParameterNumber| parameter DINT - 0 .
number of the axis parameter
number
. TRUE, .
Value Setting BOOL FALSE FALSE |Used to set the bit parameters

Note:

® ParameterNumber (DINT) =-DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24) (Data
length in the object dictionary) + SHL(UINT_TO_DWORD(uilndex), 8) (Index in the object dictionary-16
bits) + usisubIndex (Sub-index in the object dictionary-8 bits).

® ysiDatalength: Fill in according to the number of bytes: Byte 1 is 16#01; byte 2 is 16#02; byte 4 is 16#04,
and so on.

Output variables

. . Initial ..
Output Variable Name Data Type | Valid Range Value Description
. Itis setto TRUE when the
Setting . .
Done BOOL TRUE, FALSE | FALSE [setting operation
succeeded
succeeds.
Instruction Itis setto TRUE when the
Busy being BOOL TRUE, FALSE | FALSE |axis instruction is being
executed executed
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception occurs
ErrorlD Error ID SMC_ERROR - 0 X_ PH urs,
the error ID is output

3. Function description

Axis bit parameters are set by executing MC_WriteBoolParameter, which is started at the rising edge. This
function block can be repeatedly executed

without affecting each other.

4. Timing diagram

® The function block can be triggered only at the rising edge.
® \When Done is TRUE, the setting operation is successful.

® \When Busy is TRUE, the function block is being executed.

Timing description:

Executel | |
S 1

1] |
Valid 0_!_ _________________ JI-—

Busyé l |

| |

202512 (V1.1) 200

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

7.1.20 MC_WriteParameter

MC_WriteParameter: used to set the parameters of the drive axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_WriteParameter(
Axis:=,
Axis Execute:=,
_ e MC_WriteParameter sonel_ ParameterNumber:=,
MC_WriteParam | parameter | —J2°° =l I
Y Value:=
H —P terNumb Errorf— ’
eter setting | Thae o EroriD] Done=>
instruction ’
Busy=>,
Error=>,
ErrorID=>);
2. Associated variables
Input/output variables
Input/Output . Initial .
X Name Data Type| Valid Range Description
Variable Value
)) Reference to axis, that is, an
Axis Axis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
. . Initial ..
Input Variable Name Data Type| Valid Range Value Description
Execution When it is set to TRUE, this
Enable .. BOOL TRUE, FALSE | FALSE . .
condition function block is started
Axis
Access index, sub-index, and
ParameterNumber| parameter DINT - 0 .
number of the axis parameter
number
Used to set the bit
Value Setting BOOL TRUE, FALSE | FALSE
parameters
Note:

® ParameterNumber (DINT) = -DWORD_TO_DINT(SHL(USINT_TO_DOWRD(usiDataLength), 24) (Data
length in the object dictionary) + SHL(UINT_TO_DWORD(uilndex), 8) (Index in the object dictionary-16
bits) + usisublndex (Sub-index in the object dictionary-8 bits).

® ysiDatalength: Fill in according to the number of bytes: Byte 1 is 16#01; byte 2 is 16#02; byte 4 is 16#04,
and so on.

Output variables

Output Initial
. Name Data Type | Valid Range Description
Variable P g Value P
Settin Itis set to TRUE when the settin
Done & BOOL TRUE, FALSE | FALSE . &
succeeded operation succeeds.
Instruction . .
) Itis set to TRUE when the axis
Busy being BOOL TRUE, FALSE | FALSE |. L. X
instruction is being executed
executed
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs

202512 (V1.1) 201

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Output Name Data Type | Valid Range Initial Description
Variable yp & Value P
When an exception occurs, the
ErrorlD ErrorID | SMC_ERROR . 0 | eXcept !
error ID is output

3. Function description

Axis bit parameters are set by executing MC_WriteParameter, which is started at the rising edge. This
function block can be repeatedly executed without affecting each other.

4. Timing diagram

® The function block can be triggered only at the rising edge.
® \When Done is TRUE, the setting operation is successful.
°

When Busy is TRUE, the function block is being executed.

Timing description:

Execute(l) | i_ _________________ :

1]t |
Valid ol L _________________

| |

Busy (l) i i

7.1.21 MC_AbortTrigger

MC_AbortTrigger: used to terminate the association features of latch related events, in conjunction with

MC_Touchprobe.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_AbortTrigger(
Axis:=,
Event MC Abortirigger Triggerinput:=,
. association | s Doner— Execute:=,
MC AbortTrlgger)) TriggerInput Busy
- termination |—]Pecute o Done=>,
instruction Busy=>,
Error=>,
ErrorID=>);
2. Associated variables
Input/output variables
Input/Output . Initial . .
Name Data Type Valid Range Description
Variable P g Value P
. . Reference to axis, that is, an
AXxis AXxis AXIS_REF - - .
instance of AXIS_REF_SM3
Trigger Description of trigger signal
Triggerinput . g8 TRIGGER_REF P . geersi
signal and attributes
TRIGGER_REF description:
Input/Output - ..
Name Data Type | Initial Value Description
Variable P .
. Used to select a function to lock in
TRIGGER_REF |iTriggerNumber INT -1 .
the drive mode:

202512 (V1.1)

202

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Input/Output

Name Data Type | Initial Value Description
Variable yp P

0: Rising edge latching for probe 1
1: Falling edge latching for probe 1
2: Rising edge latching for probe 2
3: Falling edge latching for probe 2
Used to specify the latching trigger
mode:

FastLatchi BOOL TRUE
bFastlatching | BOO YE |{RUE: Driver mode
FALSE: Controller mode
When bFastLatching=FALSE, th
binput BOOL FALSE en brastLatching e
controller inputs a signal for trigger
bActive BOOL FALSE |Valid signal for trigger

Input variables

. . Initial ..
Input Variable Name Data Type | Valid Range Value Description
. Arising edge will start the
Execution . .
Execute - BOOL TRUE, FALSE FALSE |processing of the function
condition
block
Output variables
Output Name Data Type | Valid Range Initial Description
Variable o 8 Value s
Setting Itis set to TRUE when the
Done BOOL TRUE, FALSE FALSE . .
succeeded setting operation succeeds.
Instruction Itis setto TRUE when the
Busy being BOOL TRUE, FALSE | FALSE |axis instruction is being
executed executed
Itis set to TRUE when an
Error Error flag BOOL TRUE, FALSE FALSE .
exception occurs
When an exception occurs
ErrorID ErrorID | SMC_ERROR - 0 Xcept urs,
the error ID is output

3. Function description

The MC_AbortTrigger function block is used to terminate the association between the trigger
signal/attribute and the associated trigger instruction. The function block can be triggered only at the rising
edge of Execute. When Done is TRUE, the setting operation is successful; when Busy is TRUE, the function
block is being executed.

7.1.22 MC_ReadActualTorque

MC_ReadActualTorque: used to read the actual torque of the drive and save it to a user-defined variable.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_ReadActualTorque(
Actual WC AborETriaaeT Axis:=,
MC_ReadActualT | torque | 5 .o e Enable:=,
orque reading | |7 el Valid=>,
instruction Busy=>,
Error=>,

202512 (V1.1) 203

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Instruction Name Graphical Representation ST Representation
ErrorlD=>,
Torque=>);
2. Associated variables
Input/output variables
Input/Output . Initial L.
. Name Data Type | Valid Range Description
Variable Value
Reference to axis, that is, an
Axis Axis AXIS_REF ; .. X '
instance of AXIS_REF_SM3
Input variables
Input Name Data Type | Valid Range Initial Description
Variable P g Value P
Execution When it is set to TRUE, this
Enable X u I BOOL TRUE, FALSE | FALSE . ' . !
condition function block is started
Output variables
Output Initial
Name Data Type | Valid Range Description
Variable yP & Value P
Actual torque Itis set to TRUE when the
Valid . q BOOL TRUE, FALSE | FALSE |drive torque can be obtained
obtaining flag
correctly
Instruction being It is set to TRUE when the axis
Busy BOOL TRUE, FALSE | FALSE |, L. .
executed instruction is being executed
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception occurs,
ErrorlD Error ID SMC_ERROR - 0 .
the error ID is output
Actual torque Actual torque data that is
Torque L LREAL Torque 0
obtaining read

3. Function description

MC_ReadActualTorque is used to read the current torque value from the drive, which is active when Enable

is at a high level. This function block can be repeatedly executed without affecting each other.

4. Timing diagram
® Enable must be TRUE.

® When Valid=TRUE, the read torque is valid.

® \When Busy is TRUE, the function block is being executed.

Timing description
Enable
0
1
Valid 0

Busy (l)

Torque

202512 (V1.1)

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

7.1.23 MC_ReadActualVelocity

MC_ReadActualVelocity: used to read the actual speed of the drive and save it to a user-defined variable.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_ReadActualVelocity(
Axis:=,
Actual MC_ReadActualVelocity Ena ble::)
speed | o ol Valid=>
MC_ReadActualVelocity) e Error|— ’
reading ErrorD|— Busy=>,
. . Velocityf—
instruction Error=>,
ErrorIlD=>,
Velocity=>);
2. Associated variables
Input/output variables
Input/Outpu . Initial ..
- /, 5 Name Data Type | Valid Range Description
t Variable Value
. . Reference to axis, that is, an
AXxis AXxis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
Input Initial
Name Data Type | Valid Range Description
Variable yP 8 Value P
Execution When it is set to TRUE, this
Enable L. BOOL TRUE, FALSE | FALSE . .
condition function block is started
Output variables
Output Initial
Name Data Type | Valid Range Description
Variable yp g Value P
Actual toraue Itis setto TRUE when the drive
u u
Valid . q BOOL TRUE, FALSE | FALSE [torque can be obtained
obtaining flag
correctly
Instruction being It is set to TRUE when the axis
Busy BOOL TRUE, FALSE | FALSE |. L. .
executed instruction is being executed
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception occurs, the
ErrorlD Error ID SMC_ERROR - 0 .
error ID is output
. Actual speed .
Velocity . LREAL Speed 0 Actual speed data that is read
obtaining

3. Function description

Actual speed data is read by executing MC_ReadActualVelocity, which is valid when Enable is TRUE. This

function block can be repeatedly executed without affecting each other.

4. Timing diagram
® Enable must be TRUE.

® When Valid=TRUE, the read torque is valid.

® When Busy is TRUE, the function block is being executed.

202512 (V1.1)

205

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Timing description

Enable 1
0

a1
Valid 0

Busy (l)

Torque

7.1.24 MC_SetPosition

MC_SetPosition: used to set the position data in the instruction as the position data of an axis, without

causing any movement for setting position data. It is designed for shifting the coordinate system of an axis.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_SetPosition(
Axis:=,
Execute:=,
-, MC_SetPosition .
Position | _|as Donel— Position:=,
MC_SetPosition change | —|Bxecute Busy— Mode:=,
A R —Position Errarf—
Instruction | —_Mode ErrorlDb— Done=>,
Busy=>,
Error=>,
ErrorID=>);
2. Associated variables
Input/output variables
Input/Output Name Data Type | Valid Range Initial Description
Variable P g Value P
. . Reference to axis, that is, an
AXxis AXxis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
Input Initial
. Name Data Type | Valid Range Description
Variable P & Value P
Execution A rising edge will start the
Execute xectt BOOL |TRUE,FALSE| FALSE | '>needsew)
condition processing of the function block
Al -
Position |/ XS POSON | oAl - 0 [|Position data
data
Position mode
TRUE: relative position
Mode Setting BOOL TRUE, FALSE | FALSE |(RELATIVE)
FALSE: absolute position
(ABSOLUTE)
Output variables
Output . Initial ..
. Name Data Type | Valid Range Description
Variable P g Value P
Done Setting BOOL TRUE, FALSE| FALSE |[Itis setto TRUE when the setting

202512 (V1.1)

206

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Output . Initial ..
. Name Data Type | Valid Range Description
Variable P g Value P
succeeded operation succeeds.
Instruction
Itis set to TRUE when th i
Busy being BOOL TRUE, FALSE| FALSE .|sse 'o . W en the axis
instruction is being executed
executed
Iti TRUE wh
Error Errorflag | BOOL |TRUE,FALSE| FALsE | 'S SettoTRUEwhenan
exception occurs
Wh ti th
ErrorlD ErrorID |SMC_ERROR - 0 en an exception occurs, the
error ID is output

3. Function description

Axis position parameters are set by executing MC_SetPosition, without any movement caused but with
coordinate system offset caused. This function block is triggered at the rising edge of Execute and it can be
repeatedly executed without affecting each other.

4. Timing diagram

® The function block can be triggered only at the rising edge.
® \When Done is TRUE, the setting operation is successful.

® When Busy is TRUE, the function block is being executed.

Timing description

Execute(l)_l_ _________________ J_
| |
1| |

Done 0_|_ _________________ J_
Bus 1 ! !
"o |

7.1.25 MC_TouchProbe

MC_TouchProbe: used to save the axis position when a trigger event is raised.

1. Instruction format

Instruction| Name Graphical Representation ST Representation

MC_TouchProbe(
Axis:=,
Triggerinput:=,
Execute:=,
WindowOnly:=,
FirstPosition:=,

MC_TouchProbe
Axis Doneg
Triggerinput Busy
Execute Error
'WindowOnly ErrorlD
FirstPosition RecordedPosition
LastPosition CommandAborted

External
locking
enabling

MC_

LastPosition:=,
TouchProbe

Done=>,

Busy=>,

Error=>,

ErrorlD=>,
RecordedPosition=>,
CommandAborted=>);

202512 (V1.1) 207

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

2. Associated variables

Input/output variables

Input/Output . Initial ..
P / P Name Data Type |Valid Range Description
Variable Value
. . Reference to axis, that is, an
AXis Axis AXIS_REF - - .
instance of AXIS_REF_SM3
. Trigger Association attributes such as
Triggerinput . TRIGGER_REF - - . . .
signal trigger signal and attributes
Input variables
. . Initial A
Input Variable Name Data Type |Valid Range Value Description
. Arising edge will start the
Execution .)
Execute o BOOL TRUE, FALSE| FALSE |processing of the function
condition
block
. Trigger
WindowOnly . BOOL TRUE, FALSE| FALSE |-
window
) . Trigger start Used to specify the start
FirstPosition . LREAL - 0 . . .
position position for receiving trigger
Tri ify th
LastPosition reger end LREAL - 0 Use_d_to spectly t_ N end,
position position for receiving trigger
Output variables
. Valid Initial .
Output Variable Name Data Type Description
Range Value
Setting TRUE, Itis setto TRUE when the
Done BOOL FALSE . .
succeeded FALSE setting operation succeeds.
Instruction . .
. TRUE, Itis set to TRUE when the axis
Busy being BOOL FALSE | N
FALSE instruction is being executed
executed
TRUE, Itis setto TRUE when an
Error Error flag BOOL FALSE .
FALSE exception occurs
When an exception occurs, the
ErroriD Error ID SMC_ERROR - 0 .
error ID is output
Trigger
. gg. Position where the trigger
RecordedPosition| recording LREAL - -
- occurs
position
Instruction TRUE, Itis set to TRUE when the axis
CommandAbort BOOL FALSE |. .
aborted FALSE instruction is aborted

3. Function description

The actual position of the axis is recorded when Truggerinput of the MC_TouchProbe function block is
triggered. When the rising edge executes drive latching, the latching signal collected by the drive is in the
recorded position.

4. Timing diagram
® The function block can be triggered only at the rising edge.

® \When Done is TRUE, the setting operation is successful.

202512 (V1.1) 208

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Timing description

Execute

Trigger.Signal

Done

WindowOnly

LastPosition

FirstPosition

 E— :

o
I

7.1.26 SMC_MoveContinuousAbsolute

SMC_MoveContinuousAbsolute: used to specify that an axis runs at the continuous absolute position (the
unit is axis-depended). The absolute position is specified by Distance and the running end speed is specified

by EndVelocity.

1. Instruction format

Instruction Name Graphical Representation ST Representation
SMC_MoveContinuousAbsolute(
Axis:=,
Execute:=,
Position:=,
Velocity:=,
Axis 7 EndVelocity:=,
absolute |z e nEndielocty |~ EndVelocityDirection:=,
MC_MoveContin| position Eglwt“ iy Acceleration:=,
uousAbsolute | continuous | Jucsisar Deceleration:=,
control | o Jerk:=,
instruction Direction:=,
InEndVelocity=>,
Busy=>,
CommandAborted=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
In:t;tr/i:;lt:ut Name Data Type | Valid Range I\;:::Ja: Description
. . Reference to axis, that is, an
AXxis AXxis AXIS_REF - - .
instance of AXIS_REF_SM3

202512 (V1.1)

209

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Input variables

Initial

Input Variable Name Data Type |Valid Range
P yp & Value

Description

. Arising edge trigger will
Execution .
Execute . BOOL TRUE, FALSE| FALSE |startthe processing of

condition .
the function block

Relative . .
. . The datais a relative
Distance position of LREAL Data range 0 .
. position
motion

Max. speed at which the
Velocity Running speed LREAL Data range 0 axis runs to reach the
destination position

. Running end Running speed after
EndVelocity LREAL Data range 0 . X .
speed instruction execution
. . . Options: Positive,
Direction of positive, .
S Negative, Current;
EndVelocityDirection|running at end|MC_Direction| negative, | Current
Not allowed: Shortest,
speed current;
Fastest
. . Acceleration when the
Acceleration Acceleration LREAL Data range 0 .
speed increases
)) Deceleration when the
Deceleration Deceleration LREAL Data range 0
speed decreases
Positive, For linear/straight axes:
negative, ositive, negative;
. . Running . . & P g
Direction direction MC_Direction| current, |shortest |For rotary/circular axes:
shortest, positive, negative,
fastest current, shortest, fastest
Output variables
. . Initial .
Output Variable Name Data Type | Valid Range Value Description
Instruction It is set to TRUE after the
InEndVelocity position BOOL TRUE, FALSE | FALSE |position in the instruction
reaching is reached
Instruction Itis set to TRUE when the
Busy being BOOL TRUE, FALSE | FALSE |axis instruction is being
executed executed
Instruction Itis set to TRUE when the
CommandAborted BOOL TRUE,FALSE | FALSE . L
aborted axis instruction is aborted
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE)
exception occurs
When an exception
ErrorlD Error ID SMC_ERROR - 0 occurs, the error ID is
output

3. Function description

This function block is the axis absolute position instruction, in which Distance specifies the axis absolute
position. The axis must be in the Standstill state before the function block execution and in the
DiscreteMotion state during the execution. The axis status must be controlled throughout the complete
running process. This function block is started at the rising edge of Execute. The startup instruction can

202512 (V1.1) 210

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

repeatedly make the rising edge valid when the axis is in the DiscreteMotion state, which always refreshes
the position. When Acceleration or Deceleration is 0, the instruction execution is abnormal, but the axis isin
the DiscreteMotion state.

4. Timing diagram

® The function block can be executed only when the axis is in the Standstill state.
® The function block can be triggered only at the rising edge.

® When Busy is TRUE, the function block is being executed.

Timing description

A

Execute

Done |

Distance

Position

Velocity |

EndVelocity

7.1.27 SMC_MoveContinuousRelative

SMC_MoveContinuousRelative: used to specify that an axis runs at the continuous relative position (the unit
is axis-depended). The absolute position is specified by Distance and the running end speed is specified by
EndVelocity

1. Instruction format

Instruction Name Graphical Representation ST Representation
SMC_MoveContinuousRelative
Axis:=,
Execute:=,
Distance:=,
Velocity:=,
Axis relative S EndVelocity:=,
) position | T T B EndVelocityDirection:=,
MC_MoveContinuo . istence commendaboridf— :
; continuous | —edvenay - el Acceleration:=,
usRelative e)
control | Joscacen Deceleration:=,
instruction Jerk:=,
InEndVelocity=>,
Busy=>,
CommandAborted=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output . Initial . .
P / P Name Data Type | Valid Range Description
Variable Value
. . Reference to axis, that is, an
Axis AXis AXIS_REF - - .
instance of AXIS_REF_SM3

202512 (V1.1) 211

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Input variables

. . Initial .
Input Variable Name Data Type |Valid Range Value Description
. Arising edge will start
Execution .
Execute . BOOL TRUE, FALSE | FALSE [the processing of the
condition)
function block
Relative . .
. . The data is a relative
Distance position of LREAL Data range 0 .
. position
motion
. Max. speed at which the
. Running .
Velocity speed LREAL Data range 0 axis runs to reach the
P destination position
. Running end Running speed after
EndVelocity LREAL Data range 0 . . .
speed instruction execution
. . . Options: Positive,
Direction of Positive, .
S . L . Negative, Current
EndVelocityDirection| runningat |MC_Direction| Negative, | Current
Not allowed: Shortest,
end speed Current
Fastest
. . Acceleration when the
Acceleration Acceleration LREAL Data range 0 .
speed increases
. . Deceleration when the
Deceleration Deceleration LREAL Data range 0
speed decreases
Output variables
Output Name Data Type |Valid Range Initial Description
Variable = 8 Value 5
Instruction Itis set to TRUE after the
InEndVelocity position BOOL |TRUE, FALSE| FALSE |position in the instruction is
reaching reached
Instruction))
) Itis set to TRUE when the axis
Busy being BOOL TRUE, FALSE| FALSE |, L. .
instruction is being executed
executed
Instruction Itis set to TRUE when the axis
CommandAbort BOOL TRUE, FALSE| FALSE |, L
aborted instruction is aborted
Itis set to TRUE when an
Error Error flag BOOL TRUE, FALSE| FALSE .
exception occurs
When an exception occurs, the
ErrorlD Error ID SMC_ERROR - 0 .
error ID is output

3. Function description

The axis must be in the Standstill state before the function block execution and in the DiscreteMotion state
during the execution. Pay attention to the axis state during the execution to prevent other instructions from
interrupting the instruction execution of the axis. This function block is started at the rising edge of Execute.

The startup instruction can repeatedly make the rising edge valid when the axis is in the DiscreteMotion

state, which always refreshes the position. When Acceleration or Deceleration is 0, the instruction execution
is abnormal, but the axis is in the DiscreteMotion state.

4. Timing diagram

® The function block can be executed only when the axis is in the Standstill state.

® The function block can be triggered only at the rising edge.

202512 (V1.1)

212

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

® When Busy is TRUE, the function block is being executed.

Timing description

Execute

Done

Position

Velocity |

Distance

7.1.28 MC_Jog

MC_Jog: used to instruct an axis to jog at a specified speed.

1. Instruction format

EndVelocity

Instruction| Name Graphical Representation ST Representation
MC_Jog(
Axis:=,
JogForward:=,
JogBackward:=,
MC_Jog .
. —hxis Busyp— VelOCltyI:,
Axis —{JogForward CommandAbortedf— . _
. . —JogBackward Errorf— Acceleratlon:—,
MC—JOg jogging —velocity Errorldf— .
instruction| —Aceleration Deceleration:=,
—Decelerati —
JEEI-T‘E eration Jerk.,
Busy=>,
CommandAborted=>,
Error=>,
Errorld=>);
2. Associated variables
Input/output variables
Input/Output . Initial .
X Name Data Type | Valid Range Description
Variable Value
. . Reference to axis, that is, an
Axis Axis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
. . Initial A
Input Variable Name Data Type | Valid Range Value Description
Valid at If itis TRUE, the axis moves
JogForward forward BOOL TRUE, FALSE FALSE (forward. If itis FALSE, the
jogging axis stops moving forward
Valid at If itis TRUE, the axis moves
JogBackward backward BOOL TRUE, FALSE FALSE |backward. Ifitis FALSE, the
jogging axis stops moving backward
) Target - Specified target speed.
Velocity . LREAL Positive or 0 0 . . .
velocity Unit: [Instruction unit/s]

202512 (V1.1)

213

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

. . Initial . .
Input Variable Name Data Type | Valid Range Value Description
Specified acceleration.
Acceleration |Acceleration LREAL Positive or 0 0 p' . .
Unit: [Instruction unit/s]
Specified deceleration.
Deceleration |Deceleration LREAL Positive or 0 0 p- . .
Unit: [Instruction unit/s]
Slope change value of the
Jerk Jerk LREAL Data range 0 curve acceleration or
deceleration
Output variables
. . Initial ..
Output Variable Name Data Type | Valid Range Value Description
Instruction Itis setto TRUE when the
Busy being BOOL TRUE, FALSE | FALSE |axis instruction is being
executed executed
Instruction Itis setto TRUE when the
CommandAborted uet BOOL TRUE, FALSE | FALSE I, . . W
aborted axis instruction is aborted
Itis set to TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception occurs,
Errorld Error ID SMC_ERROR - 0 .
the error ID is output

3. Function description

The function block is used to instruct the axis to jog at the target speed specified by Velocity. When the axis
needs to run forward, set JogForward to TRUE; when the axis needs to run backward, set JogBackward to
TRUE. When both JogForward and JogBackward are set to TRUE at the same time, the axis does not move. If
the speed value in MC_Jog exceeds the max. jogging speed in the axis parameters, the axis moves at the max.
jogging speed

4. Timing diagram

When JogForward or JogBackward is set to TRUE, the value of Busy changes to TRUE; when the falling edge
of JogForward or JogBackward starts deceleration until the axis is stopped, the value of Busy changes to
FALSE.

If another instruction is used to terminate the execution of this function block, the value of
CommandAborted changes to TRUE, and the value of Busy changes to FALSE.

Timing description

JogForkward
JogBackward
Busy
CommandAborted ’L
Error
Errorld 0
Target speed
Speed I ACC DEC

7 Time

Aborted by another instruction,
deceleration to stop

202512 (V1.1)

214

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

7.1.29 MC_Inch

MC_Inch: used to cause a gradual motion on an axis, which is carried out step by step.

1. Instruction format

Instruction| Name Graphical Representation ST Representation

SMC_Inch(
Axis:=,
InchForward:=,
InchBackward:=,
Distance:=,
Velocity:=,
Acceleration:=,

SMC_Inch

Axis Busy
InchFarward CommandAborted
InchBackward Errar
Distance Errorld
Welocity .
Acceleration Deceleration:=,
Deceleration —

- Jerk:=,

Axis
relative
positioning
instruction

MC_Inch

Busy=>,
CommandAborted=>,
Error=>,

Errorld=>);

2. Associated variables

Input/output variables

Input/Output Initial

Name Data Type | Valid Range Description
Variable yp g Value P

Reference to axis, that is, an

AXis AXis AXIS_REF - - .
instance of AXIS_REF_SM3

Input variables

Initial

Input Variable Name Data Type | Valid Range
P yp & Value

Description

If InchForward is TRUE, the
axis runs at the given speed
in the forward direction until
it reaches the destination.
The input must be set to
FALSE and then TRUE to

restart the running.
InchForward | orard BOOL | TRUE,FALSE | FALSE |If InchForward is set to
inching -

FALSE before the destination
is reached, the axis
decelerates to 0 at once, and
Busy is set to FALSE. If
InchBackward is set to TRUE
in simulation mode, the axis
does not move.

202512 (V1.1) 215

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

. . Initial . ..
Input Variable Name Data Type | Valid Range Value Description
If InchBackward is TRUE, the
axis runs at the given speed
in the reverse direction until
it reaches the destination.
The input must be set to
Backward FALSE and then TRUE to
InchBackward . . BOOL TRUE, FALSE | FALSE .
inching restart the running.
Note: If both
InchBackward and
InchForward are set to TRUE
at the same time, the axis
does not move.
. Moving This data is the moving
Distance . LREAL Data range 0 .
distance distance
. Max. speed at which the axis
. Running R
Velocity <peed LREAL Data range 0 runs to reach the destination
P position
. . Acceleration when the speed
Acceleration |Acceleration LREAL Data range 0 .
increases
. . Deceleration when the
Deceleration |Deceleration LREAL Data range 0
speed decreases
Output variables
. . Initial .
Output Variable Name Data Type | Valid Range Value Description
Instruction Itis setto TRUE when the
Busy being BOOL TRUE, FALSE | FALSE |axis instruction is being
executed executed
Instruction Itis setto TRUE when the
CommandAborted BOOL TRUE, FALSE | FALSE | . . L
aborted axis instruction is aborted
Itis setto TRUE when an
Error Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception occurs,
Errorld Error ID SMC_ERROR - 0 .
the error ID is output

3. Function description

The axis must be in the Standstill state before the function block execution and in the DiscreteMotion state
during the execution. Pay attention to the axis state during the execution to prevent other instructions from
interrupting the instruction execution of the axis. When Acceleration or Deceleration is 0, the instruction
execution is abnormal, but the axis is in the DiscreteMotion state.

4. Timing diagram
® |nchForward and InchBackward must be set to TRUE or FALSE.
® When Busy is TRUE, the function block is being executed.

202512 (V1.1) 216

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Timing description
A

InchForword

InchBackword

Busy

Velocity

Distance

7.1.30 SMC3_PersistPosition

SMC3_PersistPosition: used to persist the axis position of a multi-turn absolute encoder with real axis. (The
controller that is restarted due to power failure uses the position recorded before the power failure.) If the
servo motor uses an absolute encoder, use this function block.

1. Instruction format

Instruction Name Graphical Representation ST Representation
SMC3_PersistPosition(
Axis:=,
PersistentData:=,
Axis SMG_PersistPosition bEnable:= ,
—fhads bPositionRestoredt—
. . position | o brostionsoncl bPositionRestored=>,
SMC3_PersisitPosition L el .\
persisting St bPositionStored=>,
instruction bBusy=>,
bError=>,
eErrorID=>,
eRestoringDiag=>);
2. Associated variables
Input/output variables
Input/Output Valid |Initial A
q Name Data Type Description
Variable yp Range |Value P
. . Reference to axis, that is, an
A Al AXIS_REF - -
XS XS 5- instance of AXIS_REF_SM3
. Datato |SMC3_PersistPosition_ Structure of position data
PersistentData . - - .
persist Data stored at power failure
Input variables
. . Initial ..

Input Variable Name Data Type Valid Range Value Description
TRUE indicates executing
the function block, while

. TRUE, L
bEnable Enabling BOOL FALSE FALSE |FALSE indicates not
executing the function
block

202512 (V1.1)

217

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Output variables

Output Variable Name

Data Type

Valid Range

Initial
Value

Description

Position

bPositionRestored
restored

BOOL

TRUE, FALSE

FALSE

TRUE indicates the position
data is restored after the
axis restart

Position

bPositionStored
stored

BOOL

TRUE, FALSE

FALSE

TRUE indicates the position
data is stored after the
function block is called

Instruction
being
executed

Busy

BOOL

TRUE, FALSE

FALSE

Itis setto TRUE when the
axis instruction is being
executed

Error Error flag

BOOL

TRUE, FALSE

FALSE

Itis set to TRUE when an
exception occurs

ErrorID ErrorID

SMC_ERROR

When an exception occurs,
the error ID is output

Restoring

eRestoringDiag diagnosis

SMC3_Persist-P
ositionDiag

Diagnosis information for
position restoring
SMC3_PPD_RESTORING_OK
: Position restored
successfully
SMC3_PPD_AXIS_PROP_CH
ANGED: Failed to restore the
position due to axis
parameter changes
SMC3_PPD_DATA_STORED_
DURING_WRITING: The
function block copies data
from the axis data structure
but not from
PersistentData. Possible
causes: Asynchronous
persistent variables, and
controller crash.

3. Function description

When the PLC is restarted and bEnable is TRUE, bPositionRestroed is TRUE.

4. Timingdiagram

When Busy is TRUE, the function block is being executed.

A

bEnable

bPositionRestored

bPositionStored

v
-

bError

I
0 One scan

v
-t

202512 (V1.1)

218

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

7.1.31 SMC3_PersistPositionSingleturn

SMC3_PersistPositionSingleturn: used to persist the axis position of a single-turn absolute encoder with real

axis (The controller that is restarted due to power failure uses the position recorded before the power

failure.). If the servo motor uses a single-turn absolute encoder, use this function block.

1. Instruction format

Instruction Name Graphical Representation ST Representation
SMC3_PersistPositionSingleturn(
Axis:=,
PersistentData:=,
. bEnable:=,
Axis . .
. .\ - usiNumberOfAbsoluteBits:=,
SMC3_PersisitPos| position N
itionSingleturn | persistin bPositionRestored=>,
& 'p . & bPositionStored=>,
instruction
bBusy=>,
bError=>,
eErrorID=>,
eRestoringDiag=>);

2. Associated variables

Input/output variables

Input/Output Name Data Tvpe Valid Initial Descriotion
Variable yP Range | Value s
. . Reference to axis, that is, an
AXxis Axis AXIS_REF - - .
instance of AXIS_REF_SM3
. Data to |SMC3_PersistPosition_ Structure of position data
PersistentData) - - .
persist Data stored at power failure
Input variables
. . Initial .
Input Variable Name Data Type |Valid Range Value Description
TRUE indicates executing the
. function block, while FALSE
Enable Enabling BOOL TRUE, FALSE| FALSE |, . .
indicates not executing the
function block
Output variables
. Valid Initial .
Output Variable Name Data Type Description
Range Value
. TRUE indicates the position
. Position] .
bPositionRestored BOOL - - data is restored after the axis
restored
restart
. TRUE indicates the position
. Position)
bPositionStored BOOL - - datais stored after the
stored . .
function block is called
Instruction . .
. TRUE, Itis set to TRUE when the axis
Busy being BOOL FALSE | .
FALSE instruction is being executed
executed
TRUE, Itis set to TRUE when an
Error Error flag BOOL FALSE .
FALSE exception occurs

202512 (V1.1)

219

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Output Variable Name

Data Type

Valid Initial
Range Value

Description

ErroriD Error ID

SMC_ERROR

- 0

When an exception occurs, the
error ID is output

Restoring

eRestoringDiag diagnosis

SMC3_Persist-
PositionDiag

Diagnosis information for
position restoring
SMC3_PPD_RESTORING_OK:
Position restored successfully;
SMC3_PPD_AXIS
_PROP_CHANGED: Failed to
restore the position due to axis
parameter changes; SMC3_PPD
_DATA_STORED_DURING_WRI
TING: The function block
copies data from the axis data
structure, but not from
PersistentData.

Possible causes: Asynchronous
persistent variables, and
controller crash.

3. Function description

When the PLC is restarted and bEnable is TRUE, bPositionRestroed is TRUE.

4. Timing diagram

When Busy is TRUE, the function block is being executed.

A

bEnable

bPositionRestored

bPositionStored

T ——1T———
v
~+

I
1 One scan

bError

g e

7.1.32 SMC3_PersistPositionLogical

SMC3_PersistPositionSingleturn: used to persist the axis position of a single-turn absolute encoder with real
axis (The controller that is restarted due to power failure uses the position recorded before the power
failure.). If the servo motor uses a single-turn absolute encoder, use this function block.

1. Instruction format

v
~+

Instruction

SMC3_PersisitPositionLogical

Name | Graphical Representation ST Representation
. T T T —— SMC3_PersistPositionLogical(
AXIS Haxis - bPositionRestored — P
pOSition HpersistentData bPDSlEanS;;EZ;: AXIS‘._I
icti il PersistentData:=,
ersistin
'p . g —EkEnable rne EErr;?I): bEnable::’
instruction e

bPositionRestored=>,

202512 (V1.1)

220

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Instruction Name | Graphical Representation ST Representation
bPositionStored=>,
bBusy=>,

bError=>,
eError|D=>,
eRestoringDiag=>);

2. Associated variables

Input/output variables

Input/Output Valid Initial ..
X Name Data Type Description
Variable Range | Value
Reference to axis, that is, an
Axis Axis AXIS_REF ; - X '
instance of AXIS_REF_SM3
. Datato | SMC3_Persist Structure of position data stored
PersistentData . - - - .
persist | Position_Data at power failure

Input variables

. . Initial .
Input Variable | Name Data Type Valid Range Value Description
TRUE indicates executing the
function block, while FALSE
Enable Enabling BOOL TRUE, FALSE| FALSE |- " White
indicates not executing the
function block
Output variables
) Valid Initial . .
Output Variable Name Data Type Description
Range Value
. TRUE indicates the position
. Position . .
bPositionRestored BOOL - - data is restored after the axis
restored
restart
. TRUE indicates the position
. Position .
bPositionStored BOOL - - data is stored after the
stored . .
function block is called
Instruction . .
. TRUE, Itis set to TRUE when the axis
Busy being BOOL FALSE |. . .
FALSE instruction is being executed
executed
TRUE, Itis setto TRUE when an
Error Error flag BOOL FALSE]
FALSE exception occurs
When an exception occurs,
ErroriD Error ID SMC_ERROR - 0 .
the error ID is output

202512 (V1.1) 221

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Output Variable

Name

Valid

Data T
sl Range

Initial
Value

Description

eRestoringDiag

Restoring
diagnosis

SMC3_Persist-
PositionDiag

Diagnosis information for
position restoring
SMC3_PPD_RESTORING_OK:
Position restored successfully
SMC3_PPD_AXIS_PROP_CHA
NGED: Failed to restore the
position due to axis
parameter changes
SMC3_PPD_DATA_STORED_D
URING_WRITING: The
function block copies data
from the axis data structure
but not from PersistentData.
Possible causes:
Asynchronous persistent
variables, and controller
crash.

3. Function description
When the PLC is restarted and bEnable is TRUE, bPositionRestroed is TRUE.

4. Timing diagram

When Busy is TRUE, the function block is being executed.

bEnable

bPositionRestored

bPositionStored

bError

7.1.33 SMC_Homing

A

I
" One scan

v

v
-

SMC_Homing: axis home instruction, different from MC_Home. MC_Home specifies the homing mode

controlled by the servo controller, while SMC_Homing specifies the homing mode controlled by the PLC.

1. Instruction format

Instruction Nam

e

Graphical Representation

ST Representation

SMC_Homing

Axis
homing
instruction

Axis
bExecute

P elocitySlow
ifvelocityFast
FAcceleration
FDeceleration
iFlerk
nDirection

FSignalDelay

blgnoreHWLi

fHomePosition

SMC_Homing

bDone
bBusy

bCommandAbaorted

bError|

nErrarlD
bStartLatchingInde

bReferenceSwitch

nHomingMade
bReturnToZera
bIndexOccured
FindexPosition

mit

SMC_Homing(
Axis:=,
bExecute:=,
fHomePosition:=,
fVelocitySlow:=,
fVelocityFast:=,
fAcceleration:=,

fDeceleration:=,

202512 (V1.1)

222

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Instruction

Name

Graphical Representation

ST Representation

flerk:=,

nDirection:=,
bReferenceSwitch:=,
fSignalDelay:=,
nHomingMode:=,
bReturnToZero:=,
bindexOccured:=,
findexPosition:=,
blgnoreHWLimit:=,
bDone=>,

bBusy=>,
bCommandAborted=>,
bError=>,

nErrorlD=>,
bStartLatchinglndex=>);

2. Associated variables

Input/output variables

Input/Output Valid Initial . .
. Name Data Type Description
Variable Range Value
. . Reference to axis, that is, an
AXxis Axis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
. Valid Initial . .
Input Variable Name Data Type Description
Range Value
TRUE indicates executing the
. TRUE, function block, while FALSE
bExecute Executing BOOL FALSE | . .
FALSE indicates not executing the
function block
Home Home position after zeroing,
fHomePosition . LREAL - 0 using the unit after user
position . .
calibration
. Used to drive out of the
fVelocitySlow |Low speed LREAL - 0 i
reference switch
. High Used until the reference
fVelocityFast LREAL - 0 o
speed switch is found
. Accelerati . .
fAcceleration on LREAL - 0 Acceleration setting
) Decelerati . .
fDeceleration on LREAL - 0 Deceleration setting
fJerk Jerk LREAL - 0 Jerk setting
Positive,
) negative,
N Homing , . -
nDirection L MC_DIRECTION| current, | Negative |[Homing startdirection
direction
shortest,
fastest

202512 (V1.1)

223

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

. Valid Initial . .
Input Variable Name Data Type Description
Range Value
Reference switch status.
. Reference TRUE, TRUE: The reference switch is
bReferenceSwitch . BOOL FALSE
switch FALSE open. FALSE: The reference
switch is closed
Reference switch
transmission time, used to
fSignalDelay Delay LREAL - 0
compensate for the
deadzone time. Unit: second.
FAST_BSLO
W_S_STOP,
FAST_BSLO
W_STOP_S,
FAST_BSLO
. W_I_S_STO
. Homing |SMC_HOMING_ .
nHomingMode P, 0 Homing mode
mode MODE
FAST_SLOW
_S_STOP,
FAST_SLOW
_STOP_S,
FAST_SLOW
_I_S_STOP
TRUE: The axis moves to zero
after homing (# Note: If
. fHomePosition=10, the axis
Returning TRUE, . .
bReturnTozero BOOL FALSE |position is 10 after homing,
to zero FALSE ;
and when bReturnTozero is
TRUE, the axis reversely
moves by 10 units to zero.)
TRUE: Index pulse is
detected. Itis valid at the
Pulse TRUE, .
bIndexOccured . BOOL FALSE |homing modes
signal FALSE
FAST_BSLOW_I_S_STOP and
FAST_SLOW_I_S_STOP
" Index Position where the index
findexPosition . LREAL - 0
position occurs
TRUE: The hardware position
lenorin limit switch is disabled. If the
hirdwafe TRUE same physical switch is used
blgnoreHWLimit . BOOL ’ FALSE |as both the hardware
position FALSE T .
limit position limit switch and the
reference switch, hardware
control is set to FALSE.
Output variables
. . Initial . .
Output Variable Name Data Type | Valid Range Value Description
Setting .
BOOL TRUE, FALSE | FALSE |TRUE, homing completed
succeeded

202512 (V1.1)

224

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Output Variable

Name

Data Type

Valid Range

Initial

Description
Value P

bBusy

Instruction
being
executed

BOOL

TRUE, FALSE

TRUE, the function block

FALSE
is being executed

bCommandAborted

Instruction
aborted

BOOL

TRUE, FALSE

TRUE, the function block
is aborted by other action
instructions

FALSE

bError

Error flag

BOOL

TRUE, FALSE

It is set to TRUE when an

FALSE .
exception occurs

nErroriD

ErrorID

SMC_ERROR

When an exception
0 occurs, the error ID is
output

bStartLatchingindex

Start
latching
ilndex

BOOL

TRUE, FALSE

Generated by

FALSE |"bindexOccured" and

"fIndexPosition"

The homing mode SMC_HOMING _MODE is described as follows:

Mode

Type

Initial
Value

Description

FAST_BSLOW_S_STOP

SMC_HOMING_MODE

The axis follows the set direction to the
home switch at a high speed, and leaves the
home switch at a low speed in the reverse
direction after touching the home switch.
After leaving, the controller executes
MC_setPosition to set the present position
to the setting of fHomePosition, and then
executes MC_stop

FAST_BSLOW_STOP_S

SMC_HOMING_MOD

The axis follows the set direction to the
home switch at a high speed, and leaves the
home switch at a low speed in the reverse
direction after touching the home switch.
After leaving, the controller executes
MC_stop to stop the axis, and then executes
MC_setPosition to set the present position
to the setting of fHomePosition

FAST_BSLOW_I_S_STOP

SMC_HOMING_MOD

The axis follows the set direction to the
home switch at a high speed, and leaves the
home switch at a low speed in the reverse
direction after touching the home switch.
When receiving the biIndexOccured signal,
the controller executes MC_setPosition and
then MC_stop

FAST_SLOW_S_STOP

SMC_HOMING_MOD

The axis follows the set direction to the
home switch at a high speed, and leaves the
home switch at a low speed after touching
the home switch. After leaving, the
controller executes MC_setPosition to set
the present position to the setting of
fHomePosition, and then executes MC_stop

FAST_SLOW_STOP_S

FAST_SLOW_STOP_S
SMC_HOMING_MOD

The axis follows the set direction to the
home switch at a high speed, and leaves the
home switch at a low speed after touching

202512 (V1.1)

225

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Mode

Initial

Type Value

Description

the home switch. After leaving, the
controller executes MC_stop to stop the
axis, and then executes MC_setPosition to
set the present position to the setting of
fHomePosition

FAST_SLOW_I_S_STOP

SMC_HOMING_MOD 6

The axis follows the set direction to the
home switch at a high speed, and leaves the
home switch at a low speed in the reverse
direction after touching the home switch.
When receiving the biIndexOccured signal,
the controller executes MC_setPosition and
then MC_stop

3. Function description

After SMC_HOMING is started at the rising edge of bExecute, the axis moves at the speed specified by

fVelocityFast in the direction specified by nDirection, which does not end until bReferenceSwitch=FALSE.

The axis slowly stops and leaves the reference switch at the speed specified by fVelocitySlow in the reverse
direction. When bReferenceSwitch=TRUE, homing is completed

After the homing instruction is enabled, the status change sequence of bReferenceSwitch is ON—OFF—ON,
the homing is completed at the rising edge of OFF—ON, and the reference position is set. Reference position
=fHomePostion + [(fSignalDelay*1000 + 1 DC cycle)/1000] * fVelocitySlow, which actually compensates for
the bReferenceSwitch sampling delay and one-communication-cycle displacement delay.

If bReturnToZero=TRUE, the reference position is set to {fHomePostion + [(fSignalDelay*1000 + 1 DC
cycle)/1000] * fVelocitySlow} at the rising edge of OFF—ON of bReferenceSwitch, the axis moves to zero at
the speed specified by fVelocityFast.

4. Timing diagram

® The instruction is executed When bReferenceSwitch=TRUE:

bReferenceSwitch

4

A

bExecute |) i > t
l . !
| ! |
T [
I
! : » t
| | | T T >
| | |
| | [|
| ' B |
l . !
I
bBusy i i | | | >t
| [|
| | -
| ! :
bDone : : ! > t
L1 | | :
fVelpcity 1 A ! [
Fqst | /| | : !
I
Velocity A + : : > ¢
I
I

202512 (V1.1)

226

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

® The instruction is executed When bReferenceSwitch=FALSE:

A

bExecute ! i >t
! l
: |
! l
bReferenceSwitch ' | ! >t
! b I
| | |
]
| | .
bBusy | 'i | >t
: L !
i |
bDone ! I > t
I Lo g
| I
| : |
! I
Velocity ' - >
|
|
I

| -fve lg&{tys low

/

7.1.34 SMC_SetControllerMode

SMC_SetControllerMode: used to set the current running mode of the servo, which is cyclic synchronous

position control by default. For the control mode-related settings, refer to the servo manual. For example, in
INVT DA200, the position mode is 8, the speed mode is 9, and the torque mode is 10.

1. Instruction format

Instruction Name Graphical Representation ST Representation
SMC_SetControllerMode(
. Axis:=,
Axis SMC_SetControllerMode bExecute:=
control Shxis LEiE| o
bBusy [nControllerMode:=,
SMC_SetControllerMode| mode p— bDone=>
setting —bExecute nErrorID| ’
. . —{nControllerMode bBU5y=>,
instruction
bError=>,
nErrorID=>);
2. Associated variables
Input/output variables
Input/Output Valid Initial .
Name Data Type Description
Variable e Range | Value s
Axis Axis AXIS REF Reference to axis, that s, an
- instance of AXIS_REF_SM3
Input variables
. Valid " -
Input Variable | Name Data Type R Initial Value Description
TRUE indicates
bExecute | Executin BOOL TRUE, | palgp |oxecutingthe function
& FALSE block, while FALSE
indicates not

202512 (V1.1)

227

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

. Valid
Input Variable | Name Data Type Initial Value Description
Range
executing the function
block
Axis control mode
1: Torque control
mode, SMC_torque
Control 2: Speed control
nControllerMode mode SMC_Controller_MODE - SMC_Position|mode, SMC_Velocity
3: Position control
mode, SMC_Position
4: Current control
mode, SMC_Current
Output variables
Output Name Data Type Valid Range e Description
Variable P g Value P
Settin
bDone g BOOL TRUE, FALSE | FALSE |TRUE, homing completed
succeeded
Instruction
. TRUE, the function block
bBusy being BOOL TRUE, FALSE | FALSE |. .
is being executed
executed
Itis set to TRUE when an
bError Error flag BOOL TRUE, FALSE | FALSE ! . W
exception occurs
When an exception
nErroriD Error ID SMC_ERROR - 0 occurs, the error ID is
output

Preconditions for using this function block:
1. The axis must meet these control conditions, for example, the virtual axis cannot use this function block.
2. The synchronization cycle supported by each mode must be consistent.

3. The axis must NOT be in the state "errorstop", "stopping", or "homing" when this instruction is executed;
otherwise, an error will be reported.

4. If the axis still does not change to the set control mode after the instruction executes 1000 task cycles, the
instruction reports an error and bError changes from FALSE to TRUE.

5. When switching from a low level to a high level control mode (torque—velocity, torque—>position,
velocity—position), the function block calculates the set value of the high level signal. For example, when
switching from torque mode to position mode, the function block superimposes an expected position
distance (calculated by the current actual speed and the time offset in the task cycle) based on the current
actual position of the axis to compensate for the time lag between the actual and set values.

6. After the instruction is executed, when the actual control mode of the axis is changed to the set control
mode, the bDone signal is triggered. The axis will still run during the time between the instruction triggering
and the bDone signal triggering, and during this time, the function block will calculate the appropriate set
value according to the set control mode. However, if the bDone signal is triggered but there is no other
controlinstruction to continue to set the value for the axis, the axis will stop immediately and report an
error. Therefore, the rising edge of the bDone signal is required to trigger MC_Halt, MC_MoveVelocity,
MC_MoveAbsolute, and other instructions to smoothly control the axis.

Note: When the control mode is switched to torque control, a torque control instruction (such as
SMC_SetTorque) is required to smoothly control the axis.

202512 (V1.1) 228

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

7.1.35 SMC_SetTorque

SMC_SetTorque: used to set the torque of an axis (valid in torque control mode).

1. Instruction format

Instruction Name Graphical Representation ST Representation
SMC_SetTorgue_0 SMC_S(?tTorque(
SMC_SetTorque A=,
Torque —lEN ENO L bEnable:=,
SMC_SetTorque| setting = Axis bBusy fTorque:=,
instruction — bEnable CommandAborted bBusy=>,
— fTorque bError |—
nErrorlD — bError=>,
nErrorID=>);
2. Associated variables
Input/output variables
Input/Output Name Data Type Valid Initial Description
Variable P Range Value P
. . Reference to axis, that is, an
Axis Axis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
Valid Initial

Input Variable Name Data Type Description

Range Value

TRUE indicates executing the

. TRUE, function block, while FALSE

bEnable Enabling BOOL FALSE | . .
FALSE indicates not executing the

function block

The unitis 0.1%

(Axis.fFactorTor:=1;)

fTorque Set torque LREAL - 0

Output variables

Output Initial
Name Data Type Valid Range Description
Variable yp g Value P
Instruction
) TRUE, the function block
Busy being BOOL TRUE, FALSE | FALSE |, .
is being executed
executed
Itis setto TRUE when an
bError Error flag BOOL TRUE, FALSE | FALSE .
exception occurs
When an exception
nErroriD Error ID SMC_ERROR - 0 occurs, the errorID is
output

3. Function description

This instruction is only used to set the torque value of an axis and is not for torque control. The axis control
mode is valid in the torque control mode.

The torque setting instruction can only be run in the synchronous torque mode. When enabling this
instruction, you must first use MC_SetControlMode to switch the control mode to

the synchronous torque mode.

The actual torque of the drive is limited by the maximum positive/negative torque set in the configuration

202512 (V1.1) 229

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

parameters.

To stop the execution of this instruction, you can use the MC_Stop (forced stop) instruction. After stopping,
the drive switches to the synchronous position mode.

4. Error description

If the axis reports an error, Error outputs TRUE; if the axis input is valid, Error outputs TRUE.

If an axis control mode error is reported, Error is TRUE, and the error code is
SMC_ST_WRONG_CONTROLLER_MODE.

7.1.36 MC_SetOverride

MC_SetOverride: used to set the override factors for the velocity, acceleration/deceleration, and jerk of a
specified axis. The override factors are applied cumulatively.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_SetOverride(
Axis:=,
Enable:=,
. MC_SetOverride VelFactor:=,
Cumulative| _|age - Enabledl— AccFactor=
MC_SetOverride| override | Z|22s, B ol o
settin [AccFactor =1] ErrorID}— JerkFactor:=,
g [DerkFactor =1] Enabled=>,
Busy=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output Valid Initial . .
X Name Data Type Description
Variable Range Value
. . Reference to axis, that is, an
AXxis AXxis AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
) Valid Initial .
Input Variable Name Data Type Description
Range Value
TRUE indicates executing the
function block, while FALSE
Enable Enable BOOL TRUE,FALSE| FALSE | . .
indicates not executing the
function block.
Set speed)
VelFactor LREAL [0,1] 1 Speed scaling factor
factor
Set
AccFactor acceleration LREAL [0,1] 1 Acceleration scaling factor
factor
Set jerk
JerkFactor J LREAL [0,1] 1 Jerk scaling factor
factor

202512 (V1.1)

230

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Output variables

Output Variable Name Data Type valid Initial Description
P P Range Value P
TRUE indicates the function
Enabled Execute BOOL TRUE,FALSE| FALSE
block has been executed.
Instruction - .
. TRUE indicates the function
Busy being BOOL TRUE,FALSE| FALSE S
block is being executed.
executed
Itis setto TRUE when an
Error Error BOOL TRUE,FALSE| FALSE .
exception occurs.
When an exception occurs,
ErrorlD Error code | SMC_ERROR - 0 X p ! .
the error code is output.

3. Function description
On therising edge of bEnable, if no error is present, the function block is activated and bBusy is set to TRUE.
The override factor can be modified at any time and is applied directly to the motion currently in progress.

The MC_SetOverride function block instance should be called before the motion function blocks of the axis
(such as positioning or jogging). If it is called after a motion function block, the override will take effect in the
next cycle.

The computational effort required to change the override is roughly equivalent to that needed to terminate
the current motion by issuing a new motion instruction.

For a slave axis, once it has ramped in or entered the synchronized state (in sync), the override no longer has
any effect; however, during ramp-in or gearing-in, the override remains effective.

4. Error description

If the axis reports an error, the Error output is generated; if the axis input is invalid, the Error output is
generated.

It is recommended to set the ramp type to trapezoid or quadratic when using this function block. If other
ramp types such as sin? or quadratic_smooth are used, an overshoot may occur when a new override is
applied. This behavior is similar to the overshoot that may occur when terminating a motion while using
these ramp types.

In the discrete_motion state, reducing the acceleration factor (AccFactor) or jerk factor (JerkFactor) may
cause positional overshoot, which can potentially lead to equipment damage. If the
SMC_MoveContinuousAbsolute (continuous absolute motion) or SMC_MoveContinuousRelative function
(continuous relative motion) block is active, changing the speed factor (VelFactor) may also result in
positional overshoot or unexpected motion reversal. For further details, refer to the documentation of these
two function blocks.

7.2 Master-slave Axis Instructions

7.2.1 MC_Camin

MC_Camiln: used to designate a cam table to start the execution of the e-cam actions, and specify the offset
value, scaling ratio and working mode of the master and slave axes according to application requirements.

202512 (V1.1) 231

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

1. Instruction format

Instruction| Name Graphical Representation ST Representation
MC_Camin(
Master:=,
Slave:=,
Execute:=,
MasterOffset:=,
SlaveOffset:=,
MC_CamIn MasterScaling:=,
—{Master InSyncf— .
—lslave Busyl— SlaveScaling:=,
—Execute CommandAborted p— StartMode:=
—|MasterOffset Errorf— t
Cam | slaveoffsa ErrorlD}— CamTablelD:=,
. —{MasterScaling EndOfProfilef— . e
MC Camin action | 1o e aling Tappets|— VelocityDiff:=,
- start |—StartMode Acceleration:=,
. . —CamTableID .
instruction| _yelo ity Deceleration:=,
—acceleration Jerk:=
—Deceleration ’ .
—7erk TappetHysteresis:=,
—{TappetHysteresis InSync=>
Busy=>,
CommandAborted=>,
Error=>,
ErrorlD=>,
EndOfProfile=>,
Tappets=>);
2. Associated variables
Input/output variables
Input/Output . Initial .
X Name Data Type |Valid Range Description
Variable Value
. Reference to axis, that is, an
Master Master axis AXIS_REF - - .
instance of AXIS_REF_SM3
. Reference to axis, that is, an
Slave Slave axis AXIS_REF - -)
instance of AXIS_REF_SM3

Note: The master axis and the slave axis must be different axes. Otherwise, errors may be reported.

Input variables

: X Initial ..
Input Variable Name Data Type |Valid Range Value Description
) The rising edge starts the
Cam function TRUE, . .
Execute BOOL FALSE |execution of the function
entry FALSE
block
. Negative, The phase of the master
Master axis . ..
MasterOffset offset LREAL Positive, or 0 axis is moved by the
0 specified offset value
. Negative, The phase of the slave axis
Slave axis . . -
SlaveOffset LREAL Positive, or 0 is moved by the specified
offset
0 offset value
Pre-compilin
. pring The phase of the master
. scaling factor o
MasterScaling LREAL >0.0 1 axis is scaled up or down
of the master -
axis by the specified value

202512 (V1.1)

232

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

i . Initial ..
Input Variable Name Data Type |Valid Range Value Description
Pre-compilin
. Pring The phase of the slave axis
. scaling factor :
SlaveScaling LREAL >0.0 is scaled up or down by the
of the slave o
. specified value
axis
0: Absolute position
1: Relative position
2:ramp_in (ram
Output mode . [.)_ .(P
switching in)
of the slave -
StartMode . . |MC_StartMode - absolute [3: ramp_in_pos (forward
axis in relative L
ramp switching in)
tocam .
4:ramp_in_neg (reverse
ramp switching in)
Used to define a cam table,
in conjunction with output
CamTablelD TablelD | MC_CAM_ID - 'h conjunction with outpu
points of
MC_CamTableSelect
Max. speed, different from
VelocityDiff Speed LREAL - p
ramp_in
Acceleration Acceleration LREAL - Acceleration for ramp_in
Deceleration Deceleration LREAL - Deceleration for ramp_in
Jerk Jerk LREAL - Jerk for ramp_in
) Tappet Damping factor of the
TappetHysteresis . LREAL -
damping tappet
Output variables
. . Initial .
Output Variable Name Data Type [Valid Range Value Description
After the master axis and the
slave axis establish a cam
Cam taking TRUE, relationship, InSync is set.
InSync BOOL FALSE . .
effect FALSE When the execution condition
of the instruction is OFF,
InSyncis reset.
When the rising edge of
Execute is detected, it is set to
TRUE, which indicates that the
cam relationship is bein
Synchronous TRUE, P &
Busy . BOOL FALSE |coupled and you need to use
running FALSE
Cam_out for reset. The
instruction execution
condition reset cannot reset
the status.
. Itis set to TRUE when the slave
Instruction TRUE, L.
CommandAborted BOOL FALSE |axis is aborted by another
aborted FALSE . .
control instruction

202512 (V1.1)

233

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Initial

Output Variable Name Data Type |Valid Range
P yp & Value

Description

Erroris set when an error is
TRUE, detected. Error is reset when
Error Error flag BOOL FALSE . . .
FALSE the instruction execution

condition is OFF
SMC_ERRO When an exception occurs, the
ErroriD Error ID - 0 .
R error ID is output
If Periodic is 0 (acyclic) when
MC_CamTableSelect is
executed, EndOfProfile is set
. Profile TRUE, after the cam profile is
EndOfProfile BOOL FALSE .
completed FALSE completed for one time, and
EndOfProfile is reset when the
instruction execution
condition is OFF.

Associated cam tappet, which
SMC_Tappe PP
Tappets Tappet table - - can be read by

tData
MC_GetTappetValue

3. Function description

Under the condition that correct cam tables are selected and axes do not encounter errors, the rising edge
of Execute triggers the function block. In a cam motion system, to call a cam profile, call the
MC_CamTableSelect instruction to select the corresponding cam table, and then execute MC_Camln; to
change the cam profile, call the MC_CamTableSelect instruction to reselect a cam table. You need to use the
Camout instruction to decouple the cam relationship between the master axis and slave axis. When the
instruction is being executed, if another instruction is applied to the slave axis at this time, the cam
relationship between the master axis and slave axis is decoupled, and Command-Aborted outputs TRUE.

4. Timing diagram
Cyclic mode (MC_CamTableSelect.Periodic is TRUE):

Note: The MC_Camout instruction only decouples the cam relationship between the master axis and slave
axis. If the slave axis speed is not 0 during the decoupling, the slave axis does not automatically decelerate
to 0, which indicates using MC_STOP is required.

202512 (V1.1) 234

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

EndOfProfile

|

I

Master axis :

relative I | 1P
mode [L Vo >
| | (N N
| | [
| | [
[I I
Execute r| | || rl [
I I [
[[(R
: — 7—‘
Busy [I L I
| I I

| [I I
"| I | 1 |
Insync } —t }
| | I I
| I I
| H I I
f 1 (i f
| |] |
I
1

CommandAborted

MC_CamOut.Done

Non-cyclic mode (MC_CamTableSelect.Periodic is FALSE):

v

—_———_—,k N — ——

|

|
]
I I
I I
| |
H I |
I I
I |
! | Il
1 I ‘_'
| I |_ I
1 I [[
I I | I
"| | I 1 |
Insync | —t —
I I [N
| ; (.
. l | N
EndOfProfile t | I T
| | | | |
CommandAborted 4‘ ! :
| l____
CamOut !

5. Function block description

The instruction can be started in any state during master axis stop, position control, speed control, and
synchronization control.

The calculation method of the engaging points in the cam profile is as follows:

202512 (V1.1) 235

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Master Slave
offset i
N Scaling
[| CAM curve
Master
i
position K’ G Slave
position
Master
Scaling

The following formula is obtained according to the figure:
Position_Slave = SlaveScaling*CAM(MasterScaling*MasterPosition + MasterOffset) + SlaveOffset

The positions of the master and slave axes in the formula do not represent the actual physical axis positions,
but the positions of the master and slave axes related to the cam function curve.

The relationship between the master/slave axis positions and the master/slave real axis position is
described in detail.

Note: The positions of the master and slave axes refer to the positions of the master and slave axes
required by the cam function curve, but not the physical real axis positions of the master and slave axes.

Relationship between the cyclic mode and EndOfProfile: Whether the cyclic or non-cyclic mode determines
whether the e-cam needs to be performed again after the master axis reaches the end position.

In non-cyclic mode: Periodic is FALSE in the MC_CamTableSelect instruction. When the cam is completed,
EndofProfile outputs TRUE; when Execute inputs FALSE, EndofProfile outputs FALSE. At this time, the cam
only runs one master axis cycle.

Note: The master axis cycle indicates the range from the start position to the end position of the master
axis of the e-cam.

In cyclic mode: Periodicis TRUE in the MC_CamTableSelect instruction.

°=_ Rising edge trigger
//’T e e
= e
| aster cageositiol
EndOfHrofile
i X rd Y 7 e
X 7 X 7 it 7 LY
! 1 i] Y 7 ¥
| f hY f 1 § i [
Sid i | 1 F L |
igve-cam-position 14 1 T i Y i
£ Y 7 1 i \ /
b 7 L 4 | — | S 4
B 4 N AL A4

At this time, after completing one master axis cycle, the cam starts the next cycle, and the TRUE output of
the EndofProfile signal only maintains one task cycle.

Note: When the cam master-axis position is greater than or equal to the cam end position, the

EndofProfile signal outputs TRUE, and the cam master-axis position is updated to (Cam start position +

Actual position - End position).

For example: The start position and end position of the cam master axis are 0 and 360, the master-slave axis
202512 (V1.1) 236

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

scaling is set to 1, the master-slave axis offset value is set to 0, the task cycle is 2 ms, and the master axis
speed is 100. When the cam master-axis position in a certain task cycle is 359.99, the output of EndofProfile
in the next cycle is TRUE and the master axis position becomes 359.99+100*0.002-360=0.19.

The start position and end position of the cam profile designed in cyclic mode need to maintain a smooth
transition; otherwise, jumping may be caused. For example, if the start speed is 0 and the end speed is not 0,
jumping is caused when the master axis transits from the end of the cycle and the beginning of the new
cycle.

: P \ //
aster cag#ositio)
//vﬁ \L/ -
EndOfHrofile
£ \ 7 N\ F il Y
' rd Y 7 LY 7 X
' 7 13 / Y i ¥
F LY i L i kY 4
St . 13 ! i } 1 4
Igve cam position L3 ¥ 3 i 3 i
' A 4 LY f{ \ 2
/ L | —" 1 | - 4
4 N2 N N

The master/slave axis absolute/relative mode relationship in StartMode and MC_CamTableSlect is as
follows:

Absolute mode: At the beginning of a new e-cam cycle, the calculation of the e-cam has no relationship
with the present slave axis position. If the start position of the slave axis relative to the master axis is
different from the end position of the slave axis relative to the master axis, jumping is caused.

Relative mode: The new e-cam cycle changes according to the present position of the slave axis; that is, the
position of the slave axis at the end of the previous e-cam cycle is considered as "slave axis offset" in the
present e-cam movement, therefore added. However, if the position of the slave axis corresponding to the
start position of the master axis is not 0 in the e-cam definition, jumping is caused.

Ramp input: Potential jumping at the beginning of the e-cam is prevented by adding a compensation
movement (The movement is based on VelocityDiff, acceleration, and deceleration. Therefore, as long as the
slave axis is rotating, the forward ramp input can only use forward compensation, and the reverse ramp
input can only use reverse compensation. For the slave axis in linear motion, the compensation direction
can be realized automatically, that is, the forward ramp input and the reverse ramp input can be interpreted
by the ramp input.

The relationship table is as follows:

MC_CamTableSelect.MasterAbsolute
absolute

Master Axis Mode
Absolute mode

relative Relative mode

MC_Camin.StartMode|MC_CamTableSelect.SlaveAbsolute Slave Axis Mode
absolute TRUE Absolute mode
absolute FALSE Relative mode
relative TRUE Relative mode
relative FALSE Relative mode
ramp_in TRUE Absolute mode of ramp switching in

202512 (V1.1)

237

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

MC_Camln.StartMode|MC_CamTableSelect.SlaveAbsolute Slave Axis Mode
ramp_in FALSE Relative mode of ramp switching in
. Absolute mode of forward ramp
ramp_in_pos TRUE o
switchingin
. Relative mode of forward ramp
ramp_in_pos FALSE .
switchingin
. Absolute mode of reverse ramp
ramp_in_neg TRUE e
switchingin
. Relative mode of reverse ramp
ramp_in_neg FALSE o
switchingin

The relationship is described as follows:

Cam master-axis range: 0-360; cam slave-axis range: 0-180; cyclic mode; master/slave axis offset value: 0;
master/slave axis scaling ratio: 1. The designed cam table is shown in the following figure.

Tlucnsadane s

L rposition [y

[
] 2 L 8 100 120 140 160 180 200 220 240 260 280 300 320 340

StartMode=0 (Absolute mode)

In MC_CamTableSlect, when MasterAbsolute is set to FALSE and SlaveAbsolute is set to TRUE, the master
axis is working in relative mode and the slave axis is working in absolute mode. When the rising edge of
Execute starts the cam, the master axis of the cam starts from the "start position" (0) in the cam table, and
the cam slave axis is calculated and output according to the above-mentioned "cam table engaging
formula". The real axis instruction position of the slave axis is equal to the output value of the engaging
calculation. For example, if the start position of the cam slave axis is 0, and the real axis position of the slave
axis is 20 when the cam is started, the real axis position instruction of the slave axis is 0 at the start, which
causes jumping.

Note: In this case, jumping occurs when the slave axis (real axis) start position is not the slave axis start
position of the cam.

In MC_CamTableSlect, when MasterAbsolute is set to FALSE and SlaveAbsolute is set to FALSE, the master
axis is working in relative mode and the slave axis is working in relative mode. When the rising edge of
Execute starts the cam, the master axis of the cam starts from the "start position" (0) in the cam table, the
cam slave axis is calculated and output according to the above-mentioned "cam table engaging formula".
The real axis instruction position of the slave axis is equal to [Output value of engaging calculation, or cam
slave-axis position) + (Real axis position of the slave axis at startup)].

For example, when the cam is started, if the real axis position of the slave axis is 20, and the slave axis start
position in the cam table is 0, then the real axis instruction position of the slave axis is 20 when the cam is
started, the position in the following is 20 plus the calculated value of the cam table, and the highest value is
20 plus the max. calculated value (180) of the cam table, that is, 200.

202512 (V1.1) 238

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

7.2.2 MC_Camo

ut

MC_Camout: used to decouple the cam relationship of the slave axis.

Note: After executing this instruction, the slave axis continues to run at the speed used before the
decoupling. Therefore, this instruction needs to be used in conjunction with instructions such as MC_Stop.

1. Instruction format
. . . ST
Instruction Name Graphical Representation .
Representation
MC_CamOut(
Slave:=,
MC_CamOut
Cam —slave Donef— Execute:=,
MC_Camout| decoupling | —[Feete EF”FZ‘; — Done=>,
instruction ErrorIDf— Busy=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output Valid
) Name | Data Type Initial Value Description
Variable Range
Slave Reference to axis, that is, an
Slave . AXIS_REF - - .
axis instance of AXIS_REF_SM3
Input variables
Input Name Data Valid Range Initial Description
Variable Type g Value 5
)) TRUE, The rising edge starts the
Execute Cam function exit | BOOL FALSE . .
FALSE execution of the function block
Output variables
Output Name Data Type |Valid Range Initial Description
Variable P g Value .
The cam relationship with the
Done Completed BOOL TRUE, FALSE| FALSE
master slave has been decoupled
Synchronous
Busy y . BOOL TRUE, FALSE| FALSE [Theinstruction is being executed
running
Erroris set when an error is
Error Error flag BOOL TRUE, FALSE| FALSE
detected.
When an exception occurs, the
ErroriD Error ID SMC_ERROR - 0 .
error ID is output

3. Function description

The instruction is used to decouple the cam relationship of the slave axis. At the rising edge, the cam

relationship of the slave axis is decoupled. After the decoupling, the salve axis may or may not stop. If the

slave axis speed is not 0 before the instruction is executed, the cam relationship is decoupled after the DONE

signal is completed, but the slave axis still runs at the speed before the relationship is decoupled. If the slave
axis does not have a cam coupling relationship, ERROR is output.

202512 (V1.1)

239

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

4. Timing diagram

. I -7
Master axis _ 41~

position

v

—_— — = —

ynchrono
running |

r
|
|
5
]
|
| |
| 1
| : dloupllngl
Slave axis 1| >
position : Lo
|
Execute | ! | _
t i : -
[
: 1o :
|
Busy | l—l N i >
T T T »
: [:
| : |
Done (—+— : >
| [|
| [
| [
Error | [>
|
|

MC_Stop.Excute

v

v

MC_Stop.done

7.2.3 MC_CamTableSelect

MC_CamTableSelect: used to select a cam table in conjunction with MC_Camlin.

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_CamTableSelect(
Master:=,
Slave:=,
CamTable:=,
MC_CamTableSelect Execute:=,
— Master Donef— . .
Cam table | siave Busy}— Periodic:=,
MC_CamTableSelect| selection | e el MasterAbsolute:=,
. . —{Periodic CamTablelDf—
instruction|—masterabsolute SlaveAbsolute:=,
—Slavetbsolute
Done=>,
Busy=>,
Error=>,
ErrorID=>,
CamTablelD=>);
2. Associated variables
Input/output variables
Input/Output) Initial ..
. Name Data Type |Valid Range Description
Variable yp & Value P
Master Reference to axis, that is, an
Master . AXIS_REF - - .
axis instance of AXIS_REF_SM3
Slave Reference to axis, that is, an
Slave . AXIS_REF - - .
axis instance of AXIS_REF_SM3
Table Reference to cam table
CamTable . MC_CAM_REF - - description, that is, an instance
selection
of MC_CAM_REF

202512 (V1.1) 240

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

Note: The master axis and the slave axis must be different axes. Otherwise, errors may be reported. The
cam table specified by CamTable must be correct; otherwise, errors may be reported. The master and slave
axes may be real or virtual axes.

Input variables

Initial

Input Variable Name Data Type | Valid Range
P yp & Value

Description

The rising edge starts the
execution of the function block
Used to specify whether the
cam table is executed only once
BOOL |TRUE, FALSE| FALSE |orrepeatedly:

TRUE: Repeatedly

FALSE: Not repeatedly

Used to specify whether the
coordinate system of master
axis tracking uses an absolute

Execute Executing BOOL TRUE, FALSE | FALSE

Repeated

Periodic
mode

Master axis
MasterAbsolute | absolute BOOL TRUE, FALSE | FALSE

or relative position:
mode P

1: Absolute position

0: Relative position

Used with StartMode in
MC_Camin to specify whether
the present instruction position
of the slave axis is the absolute
(cam table output value
corresponding to the current
master axis position) or relative
(slave axis position at the start
of the cam table output value
superposition instruction)
position output of the cam
table:

1: Absolute position; 0: Relative
position

Slave axis
SlaveAbsolute absolute BOOL TRUE, FALSE | FALSE
mode

Output variables

Output Initial

Name Data Type |Valid Range Description
Variable yp : g Value bt

The cam relationship with the

Done Completed BOOL TRUE, FALSE | FALSE
master slave has been decoupled

Synchronou . S
Busy . BOOL TRUE, FALSE | FALSE |Theinstruction is being executed
srunning
Error is set when an error is
Error Error flag BOOL TRUE, FALSE | FALSE
detected.
When an exception occurs, the
ErroriD Error ID SMC_ERROR - 0 .
error ID is output
. Used to select the effective cam
Effective

CamTablelD cam ID MC_CAM_ID - - ID, which is used together with
CamTablelD in MC_Camln

202512 (V1.1) 241

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

3. Function description

The instruction specifies the cam table required for e-cam running. Therefore, before using this instruction,
you must edit the cam table (with a cam editor or online). The specified cam table can be executed at the
rising edge of Execute or refreshed after cam table update. When the Done signal is TRUE, the variable
"CamTablelD" is output and takes effect. During instruction execution, Busy is TRUE; when Done is TRUE,
Busy is FALSE. For details about MasterAbsolute, SlaveAbsolute, and Periodic, see MC_Camln.

7.2.4 MC_Gearln

MC_Gearln: used to set the gear ratio between the slave axis and the master axis to perform electronic

gearing.

1. Instruction format

Instruction | Name Graphical Representation ST Representation
MC_GearlIn(
Master:=,
Slave:=,
Execute:=,
RatioNumerator:=,
MC_GearIn . .
—Master InGear|— RatioDenominator:=,
E-gear —Slave Busyp— .
. —{Execute CommandAbortedf— Acceleratlon::,
MC_Gearln |function —{RatioNumerator Errorf— .
—RatioDen.ominator ErrorIDf— Deceleratlon::,
block —Acceleratl.on
:g)eer;eleratlon Jerk::,
InGear=>,
Busy=>,
CommandAborted=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output . Initial . .
X Name Data Type | Valid Range Description
Variable Value
) Reference to axis, that is, an
Master Master axis | AXIS_REF - - .
instance of AXIS_REF_SM3
. Reference to axis, that is, an
Slave Slave axis | AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
]) Initial . .
Input Variable Name Data Type| Valid Range Value Description
. The function block is
Execute Executing BOOL TRUE, FALSE | FALSE | . .
triggered at the rising edge
. Numerator of Positive, .
RatioNumerator . DINT . 1 Numerator of gear ratio
gear ratio negative
. . Denominator Positive . .
RatioDenominator . UDINT 1 Denominator of gear ratio
of gear ratio number
Acceleration Acceleration | LREAL Positive or 0 - Specified acceleration
Deceleration Deceleration| LREAL Positive or 0 - Specified deceleration
Jerk Jerk LREAL Positive or 0 - Jerk

202512 (V1.1)

242

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Output variables

. . Initial . L.
Output Variable Name Data Type | Valid Range Value Description
. Itis set to TRUE when the
Gear ratio .
InGear BOOL TRUE, FALSE | FALSE [slave axis reaches the target
reached
speed
Synchronous The instruction is being
Busy . BOOL TRUE, FALSE | FALSE
running executed
Itis set to TRUE when the
CommandAborted| Interruption BOOL TRUE, FALSE | FALSE |instruction is aborted by
another control instruction
Error is set when an error is
Error Error flag BOOL TRUE, FALSE | FALSE
detected.
SMC_ERRO When an exception occurs,
ErroriD Error ID - 0 .
R the error ID is output

3. Function description

The e-gear action is started at the rising edge of Execute. To achieve decoupling after executing the e-gear,
the GearOut instruction must be used. This instruction is a speed e-gear function, and the synchronization

distance loss caused during acceleration will not be automatically compensated. When the Busy signal is
TRUE during instruction execution, if the slave axis target speed is not reached, the new rising edge of

Execute will not affect it. When the Busy signal is TRUE during instruction execution, if the slave axis target
speed is reached, the new rising edge of Execute will not affect it. When the target speed is reached, InGear
is TRUE, and then: Slave axis movement amount = Master axis movement amount *

RatioNumerator/RatioDenominator. If the master axis speed changes in real time, exercise caution before
using this instruction.

Note: Do not use the MC_SetPosition instruction during instruction execution to avoid accidents caused
by the rapid motor running.

4. Timing diagram

CommandAborted

Slave_Velocity

Execute

Busy

v

\4

InGear

\4

v

GearOut

v

Error

\4

Errorld

16#00

202512 (V1.1)

243

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

The timing diagram of the restart after a gear ratio parameter change is as follows:

Slave_Velocity

Execute

InGear

A

\4

\4

\4

Busy

7.2.5 MC_GearOut

MC_GearOut: used to terminate the MC_Gearln and MC_GearInPos instructions that are being executed.

1. Instruction format

\4

Instruction Name Graphical Representation ST Representation
MC_GearOut(
Slave:=,
E-gear _lojave MC Gearout Donel_ Execute:=,
MC_GearOut decoupling | —|Brecute EBr“r?; I~ Done=>,
instruction ErrorlDf— Busy=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output . Initial . .
Name Data Type | Valid Range Description
Variable yp g Value P
Slave Slave axis | AXIS REF Reference to axis, that is, an
- instance of AXIS_REF_SM3
Input variables
Input Initial . .
Name |[DataType| Valid Range Description
Variable P & Value s
The function block is triggered at
Execute Executing BOOL TRUE, FALSE FALSE . &8
the rising edge

202512 (V1.1)

244

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Output variables

Output Name Data Type Valid Range Initial Description
Variable A g Value &
Itis TRUE when the e-gear
relationship between the slave
Done Completed BOOL TRUE, FALSE | FALSE . .
axis and the master axis is
decoupled
Synchrono
Busy y . BOOL TRUE, FALSE | FALSE [The instruction is being executed
us running
Erroris set when an error is
Error Error flag BOOL TRUE, FALSE | FALSE
detected.
When an exception occurs, the
ErroriD ErrorID | SMC_ERROR - 0 .
error ID is output

3. Function description

The e-gear decoupling action is started at the rising edge of Execute. If Execute is TRUE and ERROR is FALSE,

Busy is TRUE and Done is TRUE.

After the e-gear decoupling action is completed, the slave axis speed used before decoupling is used.
Therefore, the slave axis is stopped in conjunction with the MC_Stop instruction. At the falling edge of

Execute, Done is FALSE.
4. Timing diagram

Execute

\ 4

Busy

v

Done

Error

v

v

Errorld

16#00

Slave_Velocity

7.2.6 MC_GearinPos

MC_GearlnPos: used to set the e-gear ratio between the slave axis and the master axis to perform electronic
gearing. It specifies the master axis position, slave axis position, and master axis distance from the
synchronization start to switch into e-gear actions.

1. Instruction format

Instruction Name Graphical Representation ST Representation
S— MC_GearInPos(
—Mast: StartS: — o—
E-gear st e Master:=,
couplin N i Slave:=
MC_Gearinpos | °*P"S | T, o
SWltCh|ng-|n —IMasterSyncPasition ErrorIDf— EXeCUte.—,
. —slaveSyncPosition .
pOSItlon —MasterStartDistance RatIONumeratOI’ZZ,
—AvoidReversal
RatioDenominator:=,

202512 (V1.1)

245

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Instruction Name

Graphical Representation

ST Representation

MasterSyncPosition:=,
SlaveSyncPosition:=,
MasterStartDistance:=,
AvoidReversal:=,
StartSync=>,

InSync=>,
Busy=>,
CommandAborted=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output Data Valid - .
P / P Name Initial Value Description
Variable Type | Range
Master Reference to axis, that is, an instance of
Master . |AXIS_REF - -
axis AXIS_REF_SM3
Slave Reference to axis, that is, an instance of
Slave . |AXIS_REF - -
axis AXIS_REF_SM3
Input variables
. Data . Initial . .
Input Variable Name Valid Range Description
Type Value
. The function block is triggered at
Execute Executing | BOOL |TRUE, FALSE| FALSE .
the rising edge
Numerator
. Numerator of the master/slave
RatioNumerator of gear DINT |TRUE, FALSE - .
. speed ratio
ratio
Denominat .
. . Denominator of the master/slave
RatioDenominator | orofgear | DINT - - .
- speed ratio
ratio
Master axis . .
) Master axis position when the
MasterSync synchroniz . .
. . LREAL - - master/slave axis gear ratios are
Position ation
-, coupled
position
Slave axis . .
. Slave axis position when the
. synchroniz . .
SlaveSyncPosition ation LREAL - - |master/slave axis gear ratios are
. coupled
position
According to this position value,
-MasterSyncPosition, and the
. SlaveSyncPosition value, a smooth
Master axis .
. curve is calculated to make the
position of . . .
MasterStart] slave axis gear synchronized with
. synchroniz| LREAL - -)
Distance atio the master axis gear when the
ion
. slave axis is at SlaveSyncPosition.
execution .
The master axis range of the curve
is [MasterStartDistance,
MasterSyncPosition]

202512 (V1.1)

246

INVT Medium and Large-Scale PLC Programming Manual Motion Control Instructions

. Data . Initial
Input Variable Name Valid Range
Value

Description
Type

It is set to FALSE if the physical
position of the slave axis leads. It is
set to TRUE if the slave axis cannot
Disabling implement reverse running
AvoidReversal reverse BOOL |[TRUE, FALSE| FALSE |physically or the reverse running
running may cause danger. It is applicable
only to modal axes. If reverse
running cannot be avoided, the
axis will stop due to exceptions.

Output variables

Valid Initial
Output Variable Name Data Type Description
P P Range |Value P
Couplin TRUE, TRUE: The e-gear coupling is
StartSync UPINE 1\ gooL FALSE gear coupiing !
start FALSE started
TRUE TRUE: The e-gear coupling is
InSync Coupling BOOL FALSE’ FALSE [completed, and the master/slave
axis gear ratios are being coupled
Synch TRUE, . S
Busy yne rc?nous BOOL FALSE |The instruction is being executed
running FALSE
Instructi TRUE, Aborted b th trol
CommandAborted nstruction BOOL FALSE|. orte . y-anothercontro
aborted FALSE instruction
Error Error fla BOOL TRUE, EALSE Error is set when an error is
& FALSE detected.
Wh ti th
ErroriD ErrorID |[SMC_ERROR - 0 en arT exception occurs, the
error ID is output

3. Function description
The instruction is started at the rising edge of Execute.

After the action starts, the slave axis accelerates or decelerates at the target speed that is the master axis
speed multiplied by the gear ratio.

The essential of the process from the synchronization start to the end is an e-cam where the slave axis
follows the master axis in the synchronization interval. At this time, the instruction automatically designs a
cam profile according to the master axis range (MasterSyncPosition-MasterStartDistance,
MasterSyncPosition), the slave axis range (current position, SlaveSyncPosition), and the gear ratios. When
synchronization is performed, the slave axis follows the master axis to complete the cam action.

Note: If the master and slave axes work in linear mode, you need to ensure that the above-mentioned
parameters are set properly; otherwise, the gear action cannot be performed correctly. Therefore, it is
recommended that the master and slave axes work in cyclic mode when this instruction is used

For example: Both the master and slave axes move forward in linear mode. If the master axis position >
MasterSyncPosition-MasterStartDistance, or the slave axis position > SlaveSyncPosition, when the
instruction is executed, the e-gear movement cannot be switched in.

The timing diagram instances with different parameters are provided:
When both the master axis and the slave axis work in cyclic mode (360 cycles):

® MasterSyncPosition=280, MasterStartDistance=50, SlaveSyncPosition=60, Master axis speed=50,
AvoidReversal=FALSE.

202512 (V1.1) 247

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

4

Execute

StartSync

\4

\4

InSync

50
100

Master axis
position

Slave axis

v

position

Slave axis

\4

speed

Error

»
>

Errorld

»
>

16#00

‘ t

® MasterSyncPosition=300, MasterStartDistance=370, SlaveSyncPosition=60, Master axis speed=50,

AvoidReversal=FALSE.

A\ 4

\4

360

Master axis

\4

position
360

Slave axis

\4

position

Slave axis

A 4

speed

A 4

A 4

16#00

202512 (V1.1)

248

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

® MasterSyncPosition=300, MasterStartDistance=50, SlaveSyncPosition=60, Master axis speed=50,

AvoidReversal=FALSE, Slave axis start position > 60.

Execute

A

StartSync

\4

A 4

InSync

360

Master axis
position

\4

A 4

350

Slave axis
position

Slave axis

\4

speed

»
»

Error

»
»>

Errorld ‘

16#00

K

When the synchronization is completed, InSync is TRUE, the target speed is reached also, and then: Slave
axis movement amount = Master axis movement amount * RatioNumerator/RatioDenominator.

For AvoidReversal: If the slave axis is a modal axis and the master axis speed (a gear ratio multiple) is not
relative to the slave axis speed, MC_GearInPos will try to avoid the reversal of the slave axis. It attempts to
"stretch" the movement of the slave axis by adding 5 slave axis cycles. If the "stretch" is invalid, an error
occurs and the slave axis stops abnormally. If the slave axis speed is related to the master axis speed (a gear
ratio multiple), an error occurs and the slave axis stops abnormally. If the slave axis is a modal axis in linear
mode, an error occurs when Execute inputs the rising edge.

4. Timing diagram

Execute

A 4

Busy

\ 4

StartSync

A 4

\ 4

|
|
|
|
InSync | |
I |
I |
I |
MasterStart MasterSync
. A Distance | Position
MasterPosition o} O

\ 4

SlaveSyncPosition

A 4

SlavePosition

Error >t

202512 (V1.1) 249

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

7.2.7 MC_Phasing

MC_Phasing: used to specify the phase difference between the master axis and the slave axis.

1. Instruction format

Instruction| Name Graphical Representation ST Representation
MC_Phasing
Master:=,
Slave:=,
Execute:=,
MC_Phasing PhaseShift:=,
—Mast D — T je—
E-cear o Bﬂg:_ Velocity:=,
g —{Execute CommandAbortedf— Acceleration:=,
MC_Phasing| decoupling |—Phaseshift Errorf— .
. .2 | —{velocity ErrorIDf— Deceleration:=,
instruction |—acceleration
—Deceleration Jerk:=,
—Jerk Done=>,
Busy=>,
CommandAborted=>,
Error=>,
ErrorlD=>);
2. Associated variables
Input/output variables
Input/Output Valid Initial . L.
P / P Name Data Type Description
Variable Range Value
Master Reference to axis, that is, an
Master . AXIS_REF - - .
axis instance of AXIS_REF_SM3
. Reference to axis, that is, an
Slave Slave axis| AXIS_REF - - .
instance of AXIS_REF_SM3
Input variables
. . Initial . L.
Input Variable Name Data Type | Valid Range Value Description
) The function block is triggered
Execute Executing BOOL TRUE, FALSE | FALSE .
at the rising edge
Phase
difference Phase difference between the
. between the master axis and slave axis. A
PhaseShift . LREAL - 0 . L
master axis positive number indicates the
and slave axis lags
the slave axis
. Max. speed at phase shift
Velocity Speed LREAL - 0]
execution
. . Max. acceleration at phase
Acceleration |Acceleration LREAL - 0 . .
shift execution
. . Max. deceleration at phase
Deceleration |Deceleration LREAL - 0 . .
shift execution
Max. jerk at phase shift
Jerk Jerk LREAL ; 0 Jerkatp
execution

202512 (V1.1)

250

INVT Medium and Large-Scale PLC Programming Manual

Motion Control Instructions

Output variables

Output Name Data Type | Valid Range Initial Description
Variable yp g Value P
Itis TRUE when the e-gear
relationship between the slave
Done Completed BOOL TRUE, FALSE | FALSE . .
axis and the master axis is
decoupled
Synchronous The instruction is bein
Busy y . ! BOOL TRUE, FALSE FALSE ! uctiont g
running executed
Command | Instruction Aborted by another control
BOOL TRUE, FALSE FALSE |. .
Aborted aborted instruction
Error is set when an erroris
Error Error flag BOOL TRUE, FALSE | FALSE
detected.
Wh ti ,th
ErroriD Error ID SMC_ERROR - 0 en an' exception oceurs, the
error ID is output

3. Function description

The phase shift is executed at the rising edge of Execute. The slave axis automatically calculates a smooth
curve, completing the phase shift relative to the master axis. The master/slave axis phase difference is the
value of PhaseShift in the input signal. When the value is a positive number, the slave axis lags behind the
master axis.

After the phase shift is completed, Done is TRUE.

The master/slave axis phase difference is compensated according to PhaseShift, Velocity, Acceleration, and
Deceleration.

When the master/slave axis phase difference reaches PhaseShift, the Done signal is output.

During the instruction execution, if the master axis instruction position and feedback position remain
unchanged, the slave axis is adjusted. Then the master/slave axis phase difference is PhaseShift.

The final result of this instruction is the phase shift between the given axis values, and therefore the actual
feedback value of a real axis may be inconsistent with the final shift.

4. Timing diagram

The master and slave axes move in 360 cycles, and the adjustment is performed at the rising edge of the

Execute signal. After the adjustment is completed, the phase shift between the slave axis and the master
axis is the value of PhaseShift.

Execute

Busy

v

Done

360

Slaveposition

60 ——" """~ AT T~ T
6/
|
|
|
.

Masterposition
PhaseShift

v

Error >t

202512 (V1.1)

251

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

8 Communication Instructions

8.1 Serial Freeport Instructions

Note: When using the RS485 freeport communication function block instructions, you need to add the
following INVT libraries in the Library Manager: ICP_Serial_Comm_hCom, ICP_Serial_Comm_Read, and
ICP_Serial_Comm_Write.

8.1.1 Instruction List

Instruction Category Name Function
Create a RS485 freeport
communication connection

ICP_Serial_Comm_hCom

RS485 freeport communication) RS485 freeport communication
. . ICP_Serial_Comm_Read
instruction read data
RS485 freeport communication
ICP_Serial_Comm_Write P . unicatt
write data
8.1.2 ICP_Serial_Comm_hCom
1. Instruction format
Graphical
Instruction Name P i ST Representation
Representation
ICP_Serial_Comm_hCom(
Enable:=,
udiPort:=,
udiBaudrate:=,
RS485 freeport I iParity:=,
_ communication | e soone— iStopBits:=,
ICP_Serial_Comm_hCom . Tpdneucrate i .
connection g - seror udiTimeout:=,
instruction xBusy=>,
xDone=>,
hCom=>,
XError=>,
eError=>);
2. Associated variables
Input variables
. Initial .
Input Type Name Data Type | Valid Range Value Description
If it is TRUE, the function
Enable Enabled BOOL TRUE, FALSE FALSE

block is enabled

Corresponding to
Hardware serial P &

udiPort UDINT - - hardware serial ports 1
port number

and 2
udiBaudrate Baud rate UDINT - - Serial port baud rate
iParity Check bit INT - - Serial port check bit
iStopBits Stop bit INT - - Serial port stop bit

202512 (V1.1) 252

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

. Initial ..
Input Type Name Data Type | Valid Range Value Description
udiTimeout | Timeout period UDINT - - Timeout period
Output variables
. Initial ..
Output Type Name Data Type | Valid Range Value Description
Function block
xBusy . BOOL TRUE, FALSE FALSE |Run flag
running
Completed
xDone signal BOOL TRUE, FALSE | FALSE |Completed flag
Communication
hCom Handle CAA.HANDLE - - .
establishment handle
xError Error flag BOOL TRUE, FALSE | FALSE |Errorflag
eError Error flag COM.ERROR - 0 Error code

3. Program example

For the RS485 freeport communication connection instruction, when the input variable Enable of the
ICP_Serial_Comm_hCom instruction is TRUE, a valid RS485 freeport communication handle will be created
(hCom is greater than 0), and xBusy and xDone are TRUE.

Open Port
ICP_Serial Comm hCom 1{
Enable:= Open,
udiPort:= 1,
udiBaudrate:= 15200

iParity:
iStopBit
udiTimeout:= 1000,
xBusy=> ,

xDone=> ,
hCom=> ,
xError=> ,
eError=>)

200,
PRRITY.NONE ,
M.5TOPBIT.ONESTOPBIT ,

8.1.3 ICP_Serial_Comm_Read

1. Instruction format

Instruction

Name

Graphical
Representation

ST Representation

ICP_Serial_Comm_Read

RS485 freeport
communication
read data

ixExecute
hCom xDane
read_szSiz: xError
pReadData
udiTimeOut

TCP_serial_Comm_Read

d_szSize

ICP_Serial_Comm_Read(
xExecute:=,
hCom:=,
read_szSize:=,
pReadData:=,
udiTimeOut:=,
xBusy=>,
xDone=>,
XError=>,
eError=>,

actual_szSize=>);

2. Associated variables

Input variables

Input Type

Name

Data Type

Initial

Valid Range
g Value

Description

xExecute

Trigger

BOOL

TRUE, FALSE FALSE

The function block is
triggered at the rising
edge

202512 (V1.1)

253

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

. Initial ..
Input Type Name Data Type | Valid Range Value Description
Connection Communication
hCom CAA.HANDLE - -
handle establishment handle
read_szSize Data length CAA.SIZE - - Read data length
Read data storage
pReadData Data storage | CAA.PVOID - -
address
- . . Communication timeout
udiTimeOut |Timeout period UDINT - - .
period
Output variables
. Initial "
Output Type Name Data Type | Valid Range Value Description
Function block Function block runnin
xBusy unction BOOL | TRUE,FALSE | FALSE | "<V unning
running flag
xDone Completed flag BOOL TRUE, FALSE | FALSE |Completed flag
xError Error flag BOOL TRUE, FALSE | FALSE |Read error
eError Error flag COM.ERROR - 0 Error code
actual_szSize | Datalength CAA.SIZE - - Actual length of read data

3. Program example

For the RS485 freeport communication read data instruction, when xExecute in the ICP_Serial_Comm_Read
instruction is TRUE, data is read from the RS485 freeport communication buffer area, and xBusy is TRUE. If

the data is read successfully, xDone is set for one scan cycle, and the read data will be placed in the variable
with the address of pReadData.

ICP_Serial Comm Read 1(

xExecute:= Read xExecute,

hCom:= ICP_Serial Comm hCom l.hCom,

read_sz5ize:= read_sz3ize_l,
pReadData:= ADR(bReadData 1),

udiTimelut:= ,
xiBusy=> ,

xDone=> ,
xError=> ,
eError=> ,
actual_szSize=>);

8.1.4 ICP_Serial_Comm_Write

1. Instruction format

Instruction

Name

Graphical
Representation

ST Representation

ICP_Serial_Comm_Write(
xExecute:=,
hCom:=,
write_szSize:=,

ICP_Serial_Comm_Write

RS485 freeport
communication
write data

1CP_Serial_Comm_Write

pWriteData:=,
udiTimeOut:=,
xBusy=>,
xDone=>,
XError=>,

eError=>);

202512 (V1.1)

254

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

1. Associated variables

Input variables

. Initial .
Input Type Name Data Type | Valid Range Value Description
The function block is
xExecute Trigger BOOL TRUE, FALSE | FALSE |triggered attherising
edge
Connection Communication
hCom CAA.HANDLE - -
handle establishment handle
write_szSize Data length CAA.SIZE - - Write data length
. Write data storage
pWriteData Data storage | CAA.PVOID - -
address
. . . Communication timeout
udiTimeOut |Timeout period UDINT - - .
period
Output variables
. Initial . L.
Output Type Name Data Type | Valid Range Value Description
Function block Function block running
xBusy . BOOL TRUE, FALSE FALSE
running flag
xDone Completed flag BOOL TRUE, FALSE | FALSE |Completed flag
xError Error flag BOOL TRUE, FALSE | FALSE |Write error
eError Error flag COM.ERROR - 0 Error code

2. Program example

For the RS485 freeport communication read data instruction, when xExecute in the
ICP_Serial_Comm_Write instruction is TRUE, the data with the starting address of pWriteData and the

length of write_szSize in the send buffer set by the user will be sent to the target device. If the data is

sent successfully in the timeout period udiTimeOut, Done is set to TRUE.

A/Write data
ICP_Serial Comm Write_1({

xExecute:= Write_xExecute,

hCom:= ICP Serial_Comm_hCom_l.hCom,

_szSize:= write_szSize 1,
= ADR(bWriteData 1},

udiTimed
xBusy=> ,
xDone=> ,
xError=>» ,
eError=>);

3. Reference program logic

® Variable Declaration
PROGEAM COM2
WAR
ICP Serial Comm hCom 1
ICP Serial Comm Read 1
ICP_Serial Comm Write_ 1

//variable

:ICP_Serial_Comm hCom.ICP Serial Comm hCom;
:ICP Serial Comm Read.ICP Serial Comm Read;
:ICP_Serial Comm Write.ICP_Serial Comm Write;

Open :BOOL; A /Enable function block
Read xExecute :BOOL;

Write_xExecute :BOOL;

bReadData_1 :ARRAY[1..c] OF BYTE;

read szSize 1 :CAR.STZE:=8;
biriteData_l :ARRAY[1..8] OF BYTE:=[1,2,3,4,5,8];
write_szSize 1 :CAR.STZE:=8; /
// State Machine
iState :UINT;
END VAR

202512 (V1.1)

255

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

® Program routine

udiPort:= 1

udiBaudrate:= 19200
iParity: PRRITY.NONE ,
iStopBits STOPBIT.ONESTOPBIT ,
udiTimeout:= 1000,

T. TROSTOPBITS,
xBusy=> ,
xDone=> ,
hCom=> ,

xError=> ,

eError=>);

1 Read 1(
Read xExecute,

hCom:= ICP_Serial Comm hCom l.hCom,
read szSize:= read szSize 1,
pReadData:= ADR(bReadData 1),
udiTimeCuti= ,

xBusy=> ,

xDone=> ,

xError=> ,
eError=> ,
actual_szSize=>);

Write_1{

Writs_xExecute,
Serial_Comm_hCom_1.hCom,

xExecute:

hCom:=
write_szSize:= write_szSize 1,
priteData:= ADR(bWriteData_l),
udiTimeCut:= ,

xBusy=> ,

xDone=>

xError=> ,

eError=>);

IF ICF Serial Comm hCom 1.hCom <>0 AND Open THEN

iState:=1;

ELSE

iState:=0;
END TF

Write xExecute:=
IF ICF Serial Comm Write_l.xDone THEN
Write xExecute:=FALSE

iState:=2;
END TF
Read xExecute:=TEUE;

IF ICP_Serial Comm Read 1.xDone THEN
Bead xExecute:=FAL3E;
iState:=0;
END IF
END CARSE

IF Open =FLLSE THEN
iState:=0;
END IF

8.2 TCP Freeport Communication Instructions

#Note: When using the freeport TCP communication function block instructions, you need to add the
following INVT libraries in the Library Manager: ICP_TCP_Comm_Client, ICP_TCP_Comm_Write,
ICP_TCP_Comm_Read, ICP_TCP_Comm_Connect, and ICP_TCP_Comm_Server.

202512 (V1.1) 256

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

8.2.1 Instruction List

Instruction Category

Name

Function

TCP freeport communication
instruction

ICP_TCP_Comm_Client

Create a TCP client
communication service

ICP_TCP_Comm_Write

Send TCP communication data

ICP_TCP_Comm_Read

Rceive TCP communication data

ICP_TCP_Comm_Connect

Create a TCP connection to the
server

ICP_TCP_Comm_Server

Create a TCP server
communication service

8.2.2 ICP_TCP_Comm_Client

1. Instruction format

Instruction Name Graphical Representation ST Representation
ICP_TCP_Comm_Client(
Enable:=,
RecvIP:=,
Port_Recv:=,
Createa TCP .
. eatie ICP_TCP_Comm_Client . Tl m eOUtIZ,
. client e nciv]
ICP_TCP_Comm_Client N~ TR T(”(D""?;QE Busy=>t,
communication A
R Error_ID ACt|Ve:>,
service)
TCPConnection=>,
Done=>,
Error=>,
Error_ID=>);
2. Associated variables
Input variables
. Initial ..
Input Type Name Data Type | Valid Range Value Description
If it is TRUE, the function
Enable Enabled BOOL TRUE, FALSE FALSE .
block is enabled
RecvIP Receiving IP STRING - - Receiving controller IP
Port_Recv Receiving port UINT - - Receiving controller port
. . . Timeout period for
Timeout Timeout period WORD - 1000 . .
requesting a connection
Output variables
. Initial ..
Output Type Name Data Type | Valid Range Value Description
Function block . .
Busy . BOOL TRUE, FALSE FALSE |Runningsignal
running
The flag indicating that
Connectio the server and the client
nnection
Active BOOL TRUE, FALSE - have established a
succeeded flag L
communication
successfully
TCPConnection| Connection |CAA.HANDLE - - The connection handle for

202512 (V1.1)

257

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Output Type Name Data Type | Valid Range I‘;::Lael Description
handle establishing a
communication between
the server and the client
Done Completed flag BOOL TRUE, FALSE | FALSE |Completed signal
Error Error flag BOOL TRUE, FALSE FALSE |Connection error
Error_ID Error ID NBS.ERROR - 0 Error code

3. Program example

To create a TCP client communication service, when the input variable Enable of the ICP_TCP_Comm_Client
instruction is TRUE, the local client monitors the connection request from the remote server. When the
client is successfully connected to the server, a valid communication handle will be created between the

client and the remote server (TCPConnection is greater than 0).
ICP_TCP_Comm Client_1(
Enable:= Enable_Client,
RecvIE:= Recv_IP,
Bort_Recv:i= Fort_Recv,
Timeout:= Timeout_Client,
Busy=> Busy_Client,
Active=> Rctive_Client,
TCPConnection=>
Done=> ,
Error=> Error_Client,
Error_ID=> ErrorID Client);

8.2.3 ICP_TCP_Comm_Write

1. Instruction format

Instruction Name Graphical Representation ST Representation
ICP_TCP_Comm_Write(
Execute:=,
TCPConnection:=,
Send TCP TICP_TCP_Comm_Write DataS|Ze:=,
. L e pose)— DataPtr_Recv:=,
ICP_TCP_Comm_Write |communication| Truese Eror|— .
DataPtr_Recy Error_IDf— Tim eout::,
data Timeout
Done=>,
Busy=>,
Error=>,
Error_ID=>);
2. Associated variables
Input variables
. Initial . .
Input Type Name Data Type | Valid Range Value Description
If it is TRUE, the function
Enable Enabled BOOL TRUE, FALSE FALSE .
block is enabled
. Connection .
TCPConnection CAA . HANDLE - - Connection handle
handle
DataSize Data length CAA.SIZE - - Data length, byte
DataPtr_Recv | Dataaddress | CAA.PVOID - - Data address
. . . Timeout period for
Timeout Timeout period WORD - 1000 . .
requesting a connection

202512 (V1.1)

258

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Output variables

. Initial ..
Output Type Name Data Type | Valid Range Value Description
Done Completed flag BOOL TRUE, FALSE - Completed signal
Function block
Busy unet . BOOL TRUE, FALSE FALSE |Running signal
running
Error Error flag BOOL TRUE, FALSE | FALSE |Sendingerror
Error_ID Error ID NBS.ERROR - 0 Error code

3. Program example

To send TCP communication data, when the input variable Enable of the ICP_TCP_Comm_Write instruction
is TRUE, the data with the starting address of DataPtr_Recv and the length of DataSize in the send buffer set

by the user will be sent to the target device connected to the TCPConnection handle. If the data is sent
successfully within the timeout period Timeout, Done is set to TRUE.

ICE_TCE Conm Write_l{

Execute:= Exccute_Write,

TCPConnection:= ICP_ICP Comm Client 1.TCPConnection ,
DataSize:= Data_Length_Write,
DataPtr Recv:= ADR(Data_Write),
Timeout:= Timeout_Write,

Done=> Done_Write,
Busy=> Busy Write,
Error=> Error_Write,
Error_ID=> };

8.2.4 ICP_TCP_Comm_Read

1. Instruction format

Instruction Name Graphical Representation ST Representation
ICP_TCP_Comm_Read(
Enable:=,
TCPConnection:=,
DataSize:=,
Receive TCP | | e sl |DataPtr_Recv:=,
ICP_TCP_Comm_Read |communication| —oms =5 |Done=>,
data] eornl |Busy=>,
Ready=>,
Count=>,
Error=>,
Error_ID=>);
2. Associated variables
Input variables
. Initial . .
Input Type Name Data Type | Valid Range Value Description
If it is TRUE, the function
Enable Enabled BOOL TRUE, FALSE FALSE .
block is enabled
. Connection .
TCPConnection CAA.HANDLE - - Connection handle
handle
DataSize Data length CAA.SIZE - - Data length, byte
DataPtr_Recv | Dataaddress | CAA.PVOID - - Data address

202512 (V1.1)

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Output variables

Initial
Output Type Name Data Type | Valid Range Value Description
Done Completed flag BOOL TRUE, FALSE | FALSE |Completed signal
Function block
Busy unet . BOOL TRUE, FALSE FALSE |Running signal
running
Read data from the buffer,
Connection and if there is data, set
Ready ! BOOL | TRUE,FALSE | FALSE nere |
succeeded the flag bit for one scan
cycle
Actual length of received
Count Data length CAA.SIZE - - &
data
Error Error flag BOOL TRUE, FALSE FALSE |Receiving error
Error_ID Error ID NBS.ERROR - 0 Error code

3. Program example

To receive TCP communication data, when the input variable Enable of the ICP_TCP_Comm_Read

instruction is TRUE, data will be read from the TCP communication buffer, and Busy is TRUE. If the data is

read successfully, Done is set for one scan cycle; the read data will be placed in the variable with the address

DataPtr_Recv; at the same time, Ready is set for one scan cycle; the actual size value of the received data

area will be assigned to Count, and the value of Count will be cleared after one scan cycle.

ICP_TCP_Comm Read_ 1|
Enable:= Enable_Read,
ICEConnection:= ICP_TCP Comm Client_ l.TCPFConnection,
DataSize:= Data_Length_Read,
DataPtr_Recv:= ADR(Data_Read),

Done=> ,

Busy=> Busy_Bead,
Ready=> Ready Read,
Count=> ,

Error=> Error_Read,
Error_ID=> ErrorID_Read);

8.2.5ICP_TCP_Comm_Server

1. Instruction format

Instruction Name Graphical Representation ST Representation
ICP_TCP_Comm_Server(
Enable:=,
RecvIP:=,
Createa TCP
v ICP_TCP_Comm_Server sl POft_ReCV::,
server —{Recvp Denef—
ICP_TCP_Comm_Server L —lfport_Recv eor— |Busy=>,
communication Lo ID—
. Done=>,
service

Error=>,
Error_ID=>,
TCPServer=>);

2. Associated variables

Input variables

. Initial A
Input Type Name Data Type | Valid Range Value Description
Enable Enabled BOOL TRUE, FALSE | FALSE |!fitis TRUE, the function
block is enabled
RecvIP Controller IP STRING - - Server controller IP
Port_Recv Controller port UINT i i Server controller port
number number

202512 (V1.1)

260

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Output variables

. Initial ..
Output Type Name Data Type | Valid Range Value Description
Function block
Busy . BOOL TRUE, FALSE FALSE |Run flag
running
Done Completed flag BOOL TRUE, FALSE | FALSE |Completed signal
Error Error flag BOOL TRUE, FALSE FALSE |Connection error
Error_ID Error ID NBS.ERROR - - Error code
TCPServer Server handle |CAA.HANDLE - - TCP server handle

3. Program example

To create a TCP server communication service, when the input variable Enable of the
ICP_TCP_Comm_Server instruction is TRUE, a valid communication handle will be created between the

server and the remote client (TCPServer is not equal to 0).

'Viou are advised to set the rec

e recelving port number of the server to 5000

ICP_TCP Comm Server_ 1{

Enable:= Enakle 3erver,
RecvIP:= Recv IP,
Port_Recw:= Port_Recv,
Busy=>» ,

Done=> ,

Error=> Error_Server,
Error_ID=> ErrorID Server,

ICPServer=>);

8.2.6 ICP_TCP_Comm_Connect

1. Instruction format

Instruction Name Graphical Representation ST Representation
ICP_TCP_Comm_Connect(
Enable:=,
Createa TCPServer:=,
TC P _leraore ICP_TCP_Comm_Connect ol BU Sy:>,
ICP_TCP_Comm_Connect|connection| | oo |Active=>,
to the TcPcﬂnr::crﬁ;[;: Done:>’
server Error:>,
Error_ID=>,
TCPConnection=>);
2. Associated variables
Input variables
. Initial ..
Input Type Name Data Type | Valid Range Value Description
If it is TRUE, the function
Enable Enabled BOOL TRUE, FALSE FALSE .
block is enabled
Connection .
TCPServer CAA.HANDLE - - TCP connection handle
handle
Output variables
. Initial ..
Output Type Name Data Type | Valid Range Value Description
Function block
Busy . BOOL TRUE, FALSE FALSE |Run flag
running

202512 (V1.1)

261

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

. Initial . .
Output Type Name Data Type | Valid Range Value Description
. The server monitors the
. Connection .)
Active BOOL TRUE, FALSE FALSE |remote client connection
succeeded
handle flag
Done Completed flag BOOL TRUE, FALSE | FALSE |Completed signal
Error Error flag BOOL TRUE, FALSE FALSE |Connection error
Error_ID Error ID NBS.ERROR - - Error code
The connection handle for
. Connection establishing a
TCPConnection CAA.HANDLE - - Lo
handle communication between
the server and the client

3. Program example

To create a TCP connection to the server instruction, when the input variable Enable of the
ICP_TCP_Comm_Connect instruction is TRUE, the local server monitors the connection request from the
remote client. When the client successfully connects to the server through the server handle TCPServer, a
valid communication handle will be created between the server and the remote client (TCPConnection is

greater than 0).

13 ICP_TCPF_Comm Connect 1{

14 Enable:= Enable_ Server,

15 ICEServer:= ICP_TCP_Comm Server_ l.TCPServer,
1€ Busy=> Busy Connect,

1 Bctiwve=> Active_ Connect,

13 Done=> ,

15 Error=> Error_Connect,

20 Error ID=> ErrorlID Connect,

21 TCPConnection=>) ;

8.3 UDP Freeport Communication Instructions

Note:

® When using the freeport UDP communication function block instructions, you need to add the
following INVT libraries in the Library Manager: ICP_UDP_Comm_Send and ICP_UDP_Comm_Receive.

® The freeport UDP communication function block described in this section is designed to operate

independently as a client or server to communicate with third-party devices. If simultaneous data

sending and receiving with the same third-party device is required, an additional independent set of

library files must be used.

8.3.1 Instruction List

Instruction Category Name

Function

UDP freeport communication ICP_UDP_Comm_Send

Send UDP communication data

instruction ICP_UDP_Comm_Receive

Rceive UDP communication data

202512 (V1.1)

262

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

8.3.2 ICP_UDP_Comm_Send

1. Instruction format

Instruction Name Graphical Representation ST Representation
ICP_UDP_Comm_Send(
Enable:=,
Send_IP:=,
Port_Send:=,
~lenable 1P U0PComm._Send s |Recv_IP:=,
Send UDP | s E loort Rec
—Port_Zen: ¥Errorf— Ve =,
ICP_UDP_Comm_Send|communication| 7, Erer P —.
—{PataSize DataSIZeiz,
data —Ipataptr_send
—imeeut DataPtr_Send:=,
Timeout:=,
Done=>,
Busy=>,
XError=>);
2. Associated variables
Input variables
. Initial ..
Input Type Name Data Type | Valid Range Value Description
If it is TRUE, the function
Enable Enabled BOOL TRUE, FALSE | FALSE ') unct
block is enabled
Send_IP Sending IP STRING - - Sending controller IP
Port_Send Sending port UINT - - Sending controller port
Recv_IP Receiving IP STRING - - Receiving controller IP
Port_Recv Receiving port UINT - - Receiving controller port
DataSize Data length CAA.SIZE - - Data length to be sent
Received data storage
DataPtr_Send | Datastorage | CAA.PVOID - -
address
i i . Timeout period for
Timeout Timeout period WORD - 1000) .
requesting a connection
Output variables
. Initial ..
Output Type Name Data Type | Valid Range Value Description
Done Completed flag BOOL TRUE, FALSE | FALSE |Completed signal
Function block
Busy . BOOL TRUE, FALSE FALSE |Run flag
running
xError Error flag BOOL TRUE, FALSE | FALSE |Sendingerror
Error_ID Error ID NBS.ERROR - 0 Error code

3. Program example

To send UDP communication data, when the input variable Enable of the ICP_UDP_Comm_Send instruction
is TRUE, the data with the starting address of DataPtr_Send and the length of DataSize in the send buffer set
by the user will be sent to the target device with the receiving IP of Recv_IP. If the data is sent successfully

within the timeout period Timeout, Done is set to TRUE.

202512 (V1.1)

263

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Timeout:=,
Done=> ,
Busy=> ,
xError=> ,
Error_ID=>):

ICP_UDP_Comm Send_1(
Enable := 0

192.168.1.40°"
192.168.1.40°7,
Port_Recv[3000 |:= 3000,
Datasize W - 1o,
DataPtr_Sen 2054621216152 := ADR(Data),

/SIZEQF (Data)

8.3.3 ICP_UDP_Comm_Receive

1. Instruction format

Instruction Name Graphical Representation ST Representation
ICP_UDP_Comm_Receive(
Enable:=,
RecvIP:=,
Port_Recv:=,
DataSize:=,
)] TCP_UDP_Comm_Receive DataPt r'_ReCV::,
Receive UDP | —f=:
. . . —{Port_Recv Done:>’
ICP_UDP_Comm_Receive|communication| ...
Busy=>,
data
xError=>,
Error_ID=>,
xReady=>,
IpFrom=>,
PortFrom=>,
Count=>);
2. Associated variables
Input variables
. Initial -
Input Type Name Data Type | Valid Range Value Description
Ifitis TRUE, the function
Enable Enabled BOOL TRUE, FALSE | FALSE ' . ’ unct
block is enabled
Recv_IP Receiving IP STRING - - Receiving controller IP
Port_Recv Receiving port UINT - - Receiving controller port
DataSize Data length CAA.SIZE - - Data length to be sent
Received data storage
DataPtr_Recv | Datastorage | CAA.PVOID - -
address
Output variables
. Initial . L.
Output Type Name Data Type | Valid Range Value Description
Done Completed flag BOOL TRUE, FALSE | FALSE |Completed signal
Function block
Busy . BOOL TRUE, FALSE FALSE |Run flag
running
XError Error flag BOOL TRUE, FALSE | FALSE |Sending error
Error_ID Error ID NBS.ERROR - 0 Error code
xReady Succeeded flag BOOL TRUE, FALSE | FALSE |Receiving succeeded flag
IpFrom Sending IP |NBS.IP_ADDR - - Data sending controller IP

202512 (V1.1)

264

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

5 Initial . ..
Output Type Name Data Type | Valid Range Value Description
Data sending controller
PortFrom Sending port UINT - - ne
port
Actual length of received
Count Data length CAA.SIZE - - data &

3. Program example

To receive UDP communication data, when the input variable of the ICP_UDP_Comm_Receive instruction is
TRUE, data will be read from the UDP communication buffer and Busy is TRUE. If the data is read
successfully, Done is set for one scan cycle; the read data will be placed in the variable with the address
DataPtr_Recv; at the same time, xReady is set for one scan cycle; the actual size value of the received data
area will be assigned to Count, and the value of Count will be cleared after one scan cycle.

/UDP function blocks were received

T on blocks were received

ICE_UDP Comm Receiwve_1{

Enabl=EGE:= ONEEIH |,
RecvIF[1621681 ¥ |:= '192.168.1.10"
Port_Recv[2000 |:= 3000,

DataPtr_Recv[Zieriziss i the port
Done=> ,

Busy=> ,

xError=> ,

Error ID=> ,
xReady=> ,
IpFrom=> ,
PortFrom=> ,

Count=>); //Returns the number of received data bytes in pBuffer

202512 (V1.1)

265

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

9 Pulse Application Instructions

9.1 HSIO Task Configuration

When using high-speed 1/0 functions, the program (PRG) that uses the high-speed I/0 functions and the

devices related to high-speed I/0 must be placed under the same task:

As shown in the figure below, the PLC_PRG program runs under HSIO_Task, and the I/O mapping of the
high-speed 1/0 device TP2XXX_HSIO (other sub-devices are similar) is also attached to HSIO_Task, so that
the high-speed 1/0 functions can operate properly.

= (@ Device (TP2422-1128)
+, Fault dagnosis summary
= & pLC Logic
= 1} Application
] Library Manager
[E] PLC_PRG (PRG)
= (&8 Task Configuration
= & HSIO_Task (IEC-Tasks)

& MainTask (IEC-Tasks)
[variable usage
") Version relation check

TP20cx_HSIO (TP2xxx-HSIO)

= (@ counter0 (Counter)
M@ Encoder_0 (Encoder)

= [puiseaxisConfigd (PulseAxisConfig)
M4 Pulse_axis_0 (PulseAxis)

= [PuiseAxisConfigl (PulseAxisConfig)
W& Puse_xis_1 (PulseAxis)

=[] PpulseAxisConfig2 (PulseAxisConfig)
WP Pulse_Axis_2 (PulseAxis)

3 SoftMotion General Axis Pool

HSIO Setting rna
Variabl

1/0 Mapping ariable
4

IEC Objects + "y

Status

Information

- Create new variable

Bus Cyde Options
Bus cycle task [HSIO_Task

rUEer Snow ain

Mapping Channel Address Type Unit
DIO %IB0 BYTE
DO0 %QB0 BYTE

Reset Mapping Always updatevariables

“# = Mapto existing variable

~] Recreate required tasks

De:

Eni

When using high-speed 1/0, the associated program and devices must be placed under the same task, such
as HSIO_Task and EtherCAT_Task. Any selected task cycle time must be consistent with the cycle time of

HSIO_Task.

Note: The content in this section applies to the PLC pulse counting and pulse output functions of the TM
series and the TP2000 series. The task cycle time for HSIO pulse output can only be set to 1ms, 2ms, or 4ms.
Setting other task cycle times will cause the function block to fail to run correctly.

The namespace of the TM high-speed I/0 library in InvtMatic.Studio V1.3.7.0 is as follows:

+-|0 _HSIO = TM_HSIO, 2.1.0,1 (INVT

In InvtMatic.Studio V3.0.0.7, the namespace of the TM and TP high-speed I/0 libraries is unified as shown
below. By default, the program prefix is INVT_HSIO.

-8 cmoHSIO S
[»

9.2 ENC Axis Control Pulse Counting Instructions

9.2.1 Instruction List

Local encoder axis

Command Category Name Function
Encoder enable (high-speed
ENC_Counter
counter)

ENC_CounterReset

Encoder reset

ENC_CounterPreset

Encoder preset

ENC_CounterProbe

Encoder probe

ENC_SetUnit

Set axis gear ratio

ENC_SetLineRotationMode

Set axis operation mode

202512 (V1.1)

266

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

Command Category Name Function

ENC_CompareSingle
ENC_CompareStep

Single-point comparison output
Equal-step comparison output
Array comparison output

ENC_CompareArray

9.2.2 ENC_Counter

1. Instruction format

Instruction | Name Graphical Representation ST Representation
ENC_Counter(
Encoder:=,
Enable:=,
Encoder £NiC Couner Busy=>,
counter | o pnfit”;ﬁ: Position=>,
ENC_Counter| enable pasﬁ\.{vlﬁ:ﬁ; Velocity=>,
function NegetiveLimt— Direction=>,
block = PositiveLimit=>,
NegetiveLimit=>,
Error=>,
ErrorID=>);

2. Associated variables

Instruction .
ENC_Counter: Counter enable (high-speed counter)
Name
No. Name Description [Nullable| Default| Range Data Type
1 Encoder Encoder axis No - - ENCODER_REF_INVT
High-level
2 Enable . Yes OFF ON, OFF BOOL
trigger
3 Busy Executing Yes OFF ON, OFF BOOL
" Current Negative,
4 Position . Yes 0 . LREAL
position positive
. Current Negative,
5 Velocity . Yes 0 . LREAL
velocity positive
L Counting
6 Direction . . Yes OFF ON, OFF BOOL
direction
Positive limit
7 PositiveLimit |state in| Yes OFF ON, OFF BOOL
linear mode
Negative
8 NegativeLimit |limit state in| Yes OFF ON, OFF BOOL
linear mode
9 Error Error sign Yes OFF ON, OFF BOOL
10 ErrorlD Error code Yes 0 0-65535 HSIO_ERROR

3. Function description

When Enable=0N, and Busy=0N, the encoder axis starts counting.

When Enable=0OFF and Busy=0FF, the encoder axis stops counting.

This function block must be used in conjunction with the hardware (encoder).
This function block supports both modular and limited types of motion axes.

Only after this function block is activated can the encoder module process the data received from the
hardware encoder.

202512 (V1.1) 267

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Note: As shown in the figure below, the motion type of the encoder axis associated with this function
block (modular or limited), as well as the scaling settings, must be initially configured in the encoder axis
device. (After logging in, these settings can also be modified via the function block, as described later.) In

addition, the bit-width setting is not effective.

= (@ Device (TP2422-1128) >
L, Fault diagnosis summary
= 2 PLC Logic

= € Application
D Lirary Manager
|E] PLC_PRG (PRG)

= (& Task Configuration
= & HSIO_Task (IEC-Tasks)
&) pc_prG
& MainTask (IEC-Tasks)
D) variable usage
[} Version relation check
= P20 _HSIO (TP20x-HSIO)
@ counterd (Counter)

W@ Encoder_0 (Encoder)

= 4] PuiseAxisConfigd (PulseAxisConfig)
N Puise_Axis_0 (PulseAxis)

= (@ useaxisConfig1 (PulseAxisConfig)
W Puise_Axis_1 (PulseAxs)

= (@ PuiseaxisConfig2 (PuiseAxisConfig)
N puse_Axis_2 (PulseAxis)

= (@ PuseaxisConfig3 (PuseAxisConfig)
0D Duen Avie 2 MDidestvicl

al

| Encoder
SMC_FreeEncoder: /O Mapping
SMC_FreeEncoder: IEC Objects
Status

Information

Encoder general settings
O Modulo
@ Finite 1

Bitwidth: |32~

Scaing

1

[Invert direction

increments <=> encoder turns

1 2 encoder tums <=> units in application 1
Oniine

vanable set value actual value Status:
Communicaton]

Velocty fu/s]

Acceleration [u/s] Etrors

Torque [N Axis Error:

FB Error:

uiDrivelnterfaceError:

strDrivelnterfaceError:

As shown in the figure below, the encoder position and related information are obtained from the counter

device. The hardware-related settings for the counter are listed below. The hardware parameters of the

counter must be configured correctly for the ENC_Counter function block to operate properly. In addition,
the TP2xxx series PLCs support differential counters.

Devices
= (@ pevice (TP2422-1128)
A, Fault diagnosis summary
= B pLc Logic
=) Application
(D Lrary Manager
[5) mc_PRG PRE)
= (@ Task Configuration

= & HSIO_Task (IEC-Tasks)

&] PLC_PRG
&5 MainTask (IEC-Tasks)

[variable usage
[version refation check
= §.z HSIO (TP -

W& Encoder_0 (Encoder)

= [@ PulseAxisConfigh (PuiseAxisConfig)

WP Pulse_xis_0 (PuiseAxis)

= [PulseaxisConfig1 (PuiseAxisConfig)

M7 Pulse_xis_1 (PulseAxis)

= (@ PulseaxisConfig2 (PulseAxisConfig)

WP puise_as_2 (Pulsedxs)

= [PulseAxisConfig3 (PuiseAxisConfig)

HSP Pulse_asis_3 (PulseAxis)
N CnPlinkinn Canarsl Avie Band

<

M & ManTask
-
| Counter Setting
Parameters
/0 Mapping
IEC Objects

Status

information

M
>

TP200 HSIO

%5 Encoder 0) Countero x

[(@ High speed counter) DifCounter [

Counter mode

Counter mode

Signal source | X0-A Phase,X1-8 Phase

AJE Phase Mutiple 1
Hard Reset A8 Phase Muitipled
|cw/fccw
Input part Pulse + Direction
! ase
Prob
Prob0
Work mode | Single trigger "
Input part =
Output preset vake
Input port | Softmode v
Compare output
Output port v

The timing diagram of the ENC_Counter function block is as follows:

Enable

Busy

Error

Direction

Position

Velocity

|
]

Triggermode () up @ Down
Prob1
Waork mode | Single trigger
Input port

202512 (V1.1)

268

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

9.2.3 ENC_CounterReset

1. Instruction format

Instruction Name Graphical Representation ST Representation
ENC_CounterReset(

Encoder:=,

Counter ENC_CounterReset Execute:=,
ENC_CounterReset| reset e Eﬁ"sv B Done=>,
instruction fwerlr Busy=>,
Error=>,

ErrorID=>);

2. Associated variables

Instruction
ENC_CounterReset: Counter reset instruction
Name
No. Name |Description|Nullable| Default Range Data Type

Encoder

1 Encoder . No - - ENCODER_REF_INVT
axis
Rising-edge

2 Execute . Yes OFF ON, OFF BOOL
trigger

3 Done Valid state Yes OFF ON, OFF BOOL

4 Busy Executing Yes OFF ON, OFF BOOL

5 Error Error sign Yes OFF ON, OFF BOOL

6 ErrorlD |Error code Yes 0 0-65535 HSIO_ERROR

3. Function description

When the instruction input Execute is on the rising edge, the corresponding counter continues to count after
being reset once.

This instruction is independent of hardware reset instructions; both can be used to reset the corresponding
counter.

Hard Reset

Input port he Triggermode (D up (® Down

9.2.4 ENC_CounterPreset

1. Instruction format

Instruction Name Graphical Representation ST Representation
ENC_CounterPreset(
Encoder:=,
Enable:=,
Counter] SoftTrigger:=,
ENC_CounterPreset | preset Eﬁ"fgg E” Position:=,
instruction| et Bz Done=>,
Busy=>,
Error=>,
ErrorlD=>);

202512 (V1.1) 269

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

2. Associated variables

Instruction))
ENC_CounterPreset: Counter preset instruction
Name
No. Name Description|Nullable| Default Range Data Type

Encoder

1 Encoder axis No - - ENCODER_REF_INVT

Xi

High-level

2 Enable) Yes OFF ON, OFF BOOL
trigger

3 SoftTrigger |Softtrigger | Yes OFF ON, OFF BOOL

. Pre-set Negative,

4 Position . Yes 0 . LREAL
position positive

5 Done Valid state Yes OFF ON, OFF BOOL

6 Busy Executing Yes OFF ON, OFF BOOL

7 Error Error sign Yes OFF ON, OFF BOOL

8 ErrorlD Error code Yes 0 0-65535 HSIO_ERROR

3. Function description

When the output preset mode is set to software mode (configured in the counter device), the rising edge at
the SoftTrigger input pin completes the setting of the encoder position (after converting it into an integer
value for the counter).

SoftTrigger

L
I

Done

Busy

CommandAborted

|3k

Error

Position

>

When the preset mode is set to hardware mode (where a specific input pin is configured), an external trigger
I/0 is used to perform the counter position preset.

Note: When Enable is on the rising edge, the current input parameters are valid; when Enable is in the
constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

The settings related to the output preset value are as follows:

Qutput preset value

x0 b4

Soft mode

Compare output X2

Input port

Output port

202512 (V1.1) 270

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

9.2.5 ENC_CounterProbe

1. Instruction format

Instruction Name Graphical Representation ST Representation
ENC_CounterProbe(
Encoder:=,

Execute:=,
ProbelD:=,
Done=>,

unterProbe
Counter —Encader SR Done]
—{Execute Busy|
ENC_CounterProbe —fProbe I
probe

ErrorID|

FTTTTT

Busy=>,
RisingPos=>,
FallingPos=>,
Error=>,
ErrorID=>);

2. Associated variables

Instruction
ENC_TouchProbe: Counter probe instruction
Name
No. Name Description |Nullable| Default| Range Data Type
1 Encoder Encoder axis No - - ENCODER_REF_INVT
Rising-edge
2 Execute . Yes OFF ON, OFF BOOL
trigger
3 ProbelD Probe ID Yes OFF ON, OFF BOOL
4 Done Valid state Yes OFF ON, OFF BOOL
5 Busy Executing Yes OFF ON, OFF BOOL
. Rising-edge Negative,
6 RisingPos Yes 0 . LREAL
latched value positive
Falling-edge Negative
7 FallingPos geds Yes 0 gative, LREAL
latched value positive
8 Error Error sign Yes OFF ON, OFF BOOL
ErroriD Error code Yes 0] 0-65535 HSIO_ERROR

3. Function description

To start the probe function module, the relevant hardware configuration must be enabled.
Prob

Prob0 Prob1l

Work mode | Series trigger v Work mode | Single trigger e

Input port X3 v Input port v

When Execute is triggered and the instruction detects the probe input specified by ProbelD is valid, the
function block latches the current axis position (the rising-edge latched value is written to RisingPos, and
the falling-edge latched value to FallingPos). This instruction does not support window mode.

Note: When Execute is triggered, only the current input parameters are valid. When Execute is in the
constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

4. Timing diagram
Probe 1, DI-triggered, and single-shot trigger.

202512 (V1.1) 271

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Dl input

Execute

Done

Busy

CommandAborted

Error

|
I
I
[
[
I
I
]
I
I
I
I
I
]
PosPosition ><

Latched
position

NegPosition >< Latched
position

For probe 1, the rising edge is valid, the DI terminal is triggered continuously, and the window function is

invalid.

—

DI Input |

I
_ [
Execute :
I

I

Done L

I

I
T

Busy |

CommandAborted

I

I

Error |
Latched position |

Latched position

PosPosition

>

Latched position

Latched position

NegPosition |

9.2.6 ENC_SetUnit

1. Instruction format

Instruction Name Graphical

Representation

ST Representation

Encoder

Axis gear ratio |_|
—{Execute
ENC_SetUnit |setting function| —puseeecyce
block]

Numerator
Denotinator

ENC_SetUnit

Done
Busy
Error|
ErrorID|

TTTT

ENC_SetUnit(
Encoder:=,
Execute:=,
PulsePerCycle:=,
DisPerCycle:=,
Numerator:=,
Denotinator:=,
Done=>,
Busy=>,
Error=>,
ErrorlD=>);

202512 (V1.1)

272

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

2. Associated variables

Instruction -
ENC_SetUnit: Axis gear ratio setting instruction
Name
No. Name Description |Nullable| Default| Range Data Type
1 Encoder Encoder axis No - - ENCODER_REF_INVT
Rising-edge
2 Execute . Yes OFF ON, OFF BOOL
trigger
The number of
pulses per Positive
3 PlusePerCycle . Yes 0 DINT
revolution of number
the encoder
Mechanical .
) . Positive
4 DisPerCycle |displacement Yes 0 LREAL
. number
per revolution
Numerator of Positive
5 Numerator . Yes 0 DINT
gear ratio number
. Denominator Positive
6 Denotinator . Yes 0 DINT
of gear ratio number
Done Valid state Yes OFF ON, OFF BOOL
Busy Executing Yes OFF ON, OFF BOOL
9 Error Error sign Yes OFF ON, OFF BOOL
10 ErrorlD Error code Yes 0 0-65535 HSIO_ERROR

3. Function description

This instruction is used to reconfigure the gear ratio of the encoder axis before enabling counting in the

corresponding ENC_Counter function block. An error is reported when the gear ratio is zero.

Note: When Execute is on the rising edge, the current input parameters are valid; when Execute is in the
constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

9.2.7 ENC_SetLineRotationMode

1. Instruction format

Instruction

Name |

Graphical Representation

ST Representation

ENC_SetLineRota
tionMode

Axis
operating
mode
setting

Encoder

Execute
LineRotateMode
SoftLimitEnable
Plimit

Nlimit
PositionPeriod

ENC_SetLineRotationMode

Done|
Busy)

T

Error|
ErrorID)|

ENC_SetLineRotationMode(

Encoder:=,
Execute:=,
LineRotateMode:=,
SoftLimitEnable:=,
Plimit:=,

Nlimit:=,
PositionPeriod:=,
Done=>,

Busy=>,

Error=>,
ErrorlD=>);

2. Associated variables

Instruction
Name ENC_SetLineRotationMode: Instruction for setting the encoder axis operating mode
No. Name Description |Nullable | Default | Range Data Type
1 Encoder Encoder axis No - - ENCODER_REF_INVT

202512 (V1.1)

273

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Instruction
Name ENC_SetLineRotationMode: Instruction for setting the encoder axis operating mode
No. Name Description |Nullable | Default | Range Data Type
Rising-edge
2 Execute . Yes OFF ON, OFF BOOL
trigger
Mode selection
3 LineRoTateMode |0: Linear mode Yes 0 0-1 INT
1: Cyclic mode
4 SoftLimitEnable |Soft limit enable Yes OFF ON, OFF BOOL
Lo Positive limit
5 Plimit Yes 0 - LREAL
value
o Negative limit
6 Nlimit Yes 0 - LREAL
value
Rotation period .
- . Positive
7 PositionPeriod |of the modular| Yes 0 LREAL
. number
axis
Done Valid state Yes OFF ON, OFF BOOL
9 Busy Executing Yes OFF ON, OFF BOOL
10 Error Error sign Yes OFF ON, OFF BOOL
11 ErroriD Error code Yes 0 0-65535 HSIO_ERROR

3. Function description

This instruction is used to reconfigure the encoder-axis linear/rotary mode before enabling counting in the
corresponding ENC_Counter function block.

When LineRotateMode=0, the local encoder axis is in linear mode. In the linear mode, SoftLimitEnable=OFF
indicates disabling the limit; SoftLimitEnable=ON indicates enabling the limit, where PLimit represents the
positive limit value and NLimit represents the negative limit value.

When LineRotateMode=1, the local encoder axis is in rotary mode. At this point, Rotation represents the
value of the rotation period. When the encoder axis counts positively, the counting value cycles from 0 to the
cycle value; when the encoder axis counts negatively, the counting value cycles from the cycle value to 0.

When soft limit is enabled, if NLimit>PLimit or if the soft limit parameters exceed the rotation period in
modular mode, the function block reports an error (soft limit parameter misconfiguration).

Note: When Execute is on the rising edge, the current input parameters are valid; when Execute is in the
constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

9.2.8 ENC_CompareSingle

1. Instruction format

Instruction Name Graphical Representation ST Representation
ENC_CompareSingle(
Encoder:=,
Execute:=,
Single-point Hard_Output_Enable:=,
comparison | |- ENC_Comparesingle o Compare_Value:=,
ENC_CompareSingle| output | T cuse el Keep_Value:=,
function | i Unit:=,
block Done=>,
Busy=>,
Error=>,
ErrorID=>);

202512 (V1.1)

274

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

2. Associated variables

Instruction
Name

ENC_CompareSingle: Encoder single-point comparison output

No.

Name

Description

Nullable

Default

Range

Data Type

1

Encoder

Encoder axis

No

ENCODER_REF_INVT

Enable

High-level trigger

Yes

OFF

ON, OFF

BOOL

Hard_Output_Enable

Hardware output
enable

Yes

OFF

ON, OFF

BOOL

Compare_Value

Comparison
position value

No

LREAL

Keep_Value

Hardware output
hold value

When Unit=0 and
Keep_Value=100
00, the output
point remains at
a high level for 1
second.

When Unit=1 and
Keep_Value=100
00, the output
point remains at
a high level until
the position
increases by
10,000.

Yes

UINT

Unit

Output hold unit
FALSE - Time
mode, unit:
100us

TRUE - Pulse
mode, unit:
pulses

No

OFF

ON, OFF

BOOL

7

Done

Completion sign

Yes

OFF

ON, OFF

BOOL

8

Busy

Executing

Yes

OFF

ON, OFF

BOOL

9

Current_Pos

Current position

Yes

LREAL

10

Error

Error sign

Yes

OFF

ON, OFF

BOOL

11

ErroriD

Error code

Yes

0-65535

HSIO_ERROR

3. Function description

In the "Compare output" settings of the local counter device, select the output port.

202512 (V1.1)

275

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

[comer senns
© High speed counter

YO Mapping
Counter mode
IEC Objects
Counter mode AB Phase Multiple1 Signal source X0-A Phase,X1-8 Phase

Hard Reset

Compare output

Output port

If Hard_Output_Enable is set to 1, the set comparison output port generates a comparison output signal; if

Hard_Output_Enable is set to 0, no comparison output signal is generated.

< Note: When Execute is on the rising edge, the current input parameters are valid; when Execute is in the
constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

4. Timing diagram

Set the comparison position value to 1000, and set the hardware output hold value Keep_Value to 50. The

output duration at the comparison point is 5ms. The instruction starts execution when Enable is set.

Note: If point Y is configured as a comparison output point, normal output control will be invalid.

Enable J |_
Done l—l—

o | 1

Error

R

Y(n)
Position 1000
9.2.9 ENC_CompareStep
1. Instruction format
Instruction Name Graphical Representation ST Representation
ENC_CompareStep(
Encoder:=,
Execute:=,
OutputEnable:=,
StartPos:=,
Encoder
. X ENC_CompareStep EndPos:= s
one-dimensional| Zjseds B
. —loutputEnable Curr:n!iPu‘;* Step:= ,
ENC_CompareStep| step-interval | s Error|—
. e T Keep_Value:=,
comparison —J[Kesp_value = 10000] Unit:=
function block o
Done=>,
Busy=>,
Current_Pos=>,
Error=>,
ErrorlD=>);

202512 (V1.1)

276

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

2. Associated variables

Instruction .
Name ENC_CompareStep: Encoder equal-step comparison
No. Name Description Nullable [Default| Range Data Type
1 Encoder |Encoder axis No - - ENCODER_REF_INVT
Enable High-level trigger Yes OFF |ON, OFF BOOL
Hard_Output_|Hardware output
3 Yes OFF |ON, OFF BOOL
Enable enable
4 StartPos |Starting position No - - LREAL
5 EndPos End position No - - LREAL
6 Step Step data No - - LREAL
Hardware output hold
value
When Unit=0 and
Keep_Value=10000,
the output point
remains at a high level
7 Keep_Value [for 1 second. Yes 0 - UINT
When Unit=1 and
Keep_Value=10000,
the output point
remains at a high level
until the position
increases by 10,000.
Output hold unit
FALSE - Time mode,
8 Unit unit: 100us No OFF |ON, OFF BOOL
TRUE - Pulse mode,
unit: pulses
9 Done Completion sign Yes OFF |ON, OFF BOOL
10 Busy Executing Yes OFF |ON, OFF BOOL
11 Current_Pos |Current position Yes 0 - LREAL
12 Error Error sign Yes OFF |ON, OFF BOOL
13 ErroriD Error code Yes 0 0-65535 HSIO_ERROR

3. Function description

In the "Compare output" settings of the local counter device, select the output port.

Counter mode
Counter mode AJB Phase Multiple1
Hard Reset
ut pe
Prob
ob0
ork mode Single trigger
Input
Output preset vaive I
YO
Y1
tpot [v2
Y3
Y4
XS,
Compare output Y6
Y7

Output port

Signal source X0-A Phase,X1-8 Phase

Work mode | Single trigger

202512 (V1.1)

277

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

If Hard_Output_Enable is set to 1, the set comparison output port generates a comparison output signal; if
Hard_Output_Enable is set to 0, no comparison output signal is generated.

Comparison point settings: In this command, StartPos is used to set the start position of the comparison
point, and EndPos is used to set the end position of the comparison point. In the linear mode, the
comparison point settings follow the rules below: when the value of StartPos is less than the value of
EndPos, Step should be set to a positive number, which represents the up-count comparison mode; when
the value of StartPos is greater than the value of EndPos, Step should be set to a negative number, which
represents the down-count comparison mode.

—1 1 1 -

StartPosition g EndPosition

Count-up compare direction

EEPCUN BN B -)

EndPosition g————0o0— StartPosition

Count-Down compare direction

In the circular mode, the comparison point settings follow the rules below: when the value of StartPos is less
than the value of EndPos, Step should be set to a positive number, which represents up-count comparison
mode; when the value of StartPos is greater than the value of EndPos, Step should be set to a negative
number, which represents the down-count comparison mode.

O/revolution O/revolution

\SmﬁPosition -,
osition

Count-Down
compare
direction

Count-Up
compare
direction

EndPogjtion Step

StartPegition
—

Note: When Enable is on the rising edge, the current input parameters are valid; when Enable is in the

constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

4. Timing diagram

Set the comparison start position to 0, the end position to 500, and the step to 100. The output duration at
each comparison point is 5ms. The instruction starts execution when Enable is set.

Note: If point Y is configured as a comparison output point, normal output control will be invalid.

Enable J |_
Done —I_
Busy J I

—_. — ——

Error

N
7

StartPos 100 200 300 400 EndPos

202512 (V1.1) 278

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

9.2.10 ENC_CompareArray

1. Instruction format

Instruction Name Graphical Representation ST Representation
ENC_CompareArray(
Encoder:=,
Execute:=,
Hard_Output_Enable:=,
Encoder Length:=,
one-dimensional| ... ENC_Compareray oo Compare_Arr:=,
ENC_COmpare arra E‘;raf;uwuljnab\e Cunent,ArrayBNﬁ: Kee Val e:=
Array y [L p_value:=,
comparison o 200 Unit:=,
function block Done=>,
Busy=>,

Current_ArrayNum=>,
Error=>,
ErrorlD=>);

2. Associated variables

Instruction
Name

ENC_CompareArray: Encoder array comparison

No.

Name

Description

Nullable

Default

Range

Data Type

1

Encoder

Encoder axis

No

ENCODER_REF_INVT

2

Enable

High-level trigger

Yes

OFF

ON,
OFF

BOOL

Hard_Output
_Enable

Hardware output

enable

Yes

OFF

ON,
OFF

BOOL

Length

Length

No

1-100

BYTE

Compare_Arr

Comparison array

No

ARRAY [0..100]OF LREAL

Keep_Value

Hardware
hold value
When Unit=0 and
Keep_Value=10000,
the output point

output

remains at a high
level for 1 second.

When Unit=1 and
Keep_Value=10000,
the output point
remains at a high
the
increases

level until
position

by 10,000.

Yes

UINT

Unit

Output hold unit
FALSE - Time
mode, unit: 100us
TRUE - Pulse
mode, unit: pulses

Yes

OFF

ON,
OFF

BOOL

Done

Completion sign

Yes

OFF

ON,
OFF

BOOL

202512 (V1.1)

279

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Instruction .
ENC_CompareArray: Encoder array comparison
Name
No. Name Description Nullable|Default| Range Data Type
ON,
Busy Executing Yes OFF BOOL
OFF
Current_Arra |Index of the current
10 Yes 0 0-100 INT
yNum array element
: ON,
11 Error Error sign Yes OFF BOOL
OFF
0-
12 ErrorlD Error code Yes 0 HSIO_ERROR
65535

3. Function description

System parameter settings

In the "Compare output" settings of the local counter device, select the output port.

| Counter Setting
@ High speed counter

Counter mode
IEC Objects
G miie AJB Phase Mutile1 Signal source X0-A Phase,X1-8 Phase
Stat:
Hard Reset
format
put pe Triggermode () up ® Down
Prob
rob1
ork mode Single trigger Work mode Single trigger
Input P
Output preset value

Input parameter settings

If Hard_Output_Enable is set to 1, the set comparison output port generates a comparison output
signal; if Hard_Output_Enable is set to 0, no comparison output signal is generated. Unit
determines whether the comparison output is generated in units of time or in units of pulses.
Keep_Value determines the comparison output duration or the unit pulse length.

Output parameter logic

After the encoder axis reaches the comparison point, the digital output terminal changes to a high
level, and the duration of the high level is determined by the parameters set in the background
configuration interface. The number of comparison points is specified by Length, and the
comparison point array is defined by Compare_Arr. Current_ArrayNum indicates the index of the
current element in the array, and the array contents must increase or decrease sequentially.

< Note: When Execute is on the rising edge, the current input parameters are valid; when Execute is in the
constant ON state, it is invalid to modify the input parameters in the graphic block being executed.

4. Timing diagram

Set the comparison point array P[4]. The output duration at each comparison pointis 5 ms. The
instruction starts execution when Enable is set.

202512 (V1.1)

280

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

Enable I I_
Done J_I—
Busy J

Error

5ms 5ms 5ms 5ms

Yin) — I_ | |

Position

P[2] f-----

I
I
I
I
I
I
I
PB] f-----=====--- p-----
I
r
|

Pl F-----

PIO] f—mm—

Index

»
>

Note: If point Y is configured as a comparison output point, normal output control will be invalid.

® Setthe comparison point array P[4]. The output hold time at each comparison pointis 2 pulses. The
instruction starts execution when Enable is set.

9.3 MC Axis Control (Pulse Output)

9.3.1 Instruction List

Command Category Name Function
MC_Power from the SM3_Basic .
. Enables the pulse output axis
library
Pulse output instruction Homing dedicated for
MC_Home_P
pulse-output axes
MC_MoveFeed P Interrupted fixed-length feed

202512 (V1.1) 281

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

9.3.2 MC_Home_P

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_Home_P(
Axis:=,
Homing Execute:=,
dedicated |_|, 1C_flome_P bonel_ Position:=,
MC_Home_P for :E;Zci:itoen CommandAb:rLII:z: Done=>,
pulse-output il Busy=>,
axes CommandAborted=>,
Error=>,
ErrorID=>);

2. Associated variables

Instruction . . .
Name MC_Home_P Homing instruction dedicated for pulse output axes
No. Name Description (Nullable/Default| Range Data Type

1 Axis Encoder axis No - - AXIS_REF_PULSE_INVT
Rising-edge

2 Execute . Yes OFF ON, OFF BOOL
trigger
Axis position

3 Position after homing| VYes 0 - LREAL
completion

4 Done Valid state Yes OFF ON, OFF BOOL

5 Busy Executing Yes OFF ON, OFF BOOL
Execution

6 CommandAborted|. Yes OFF ON/OFF BOOL
interrupt flag

7 Error Error sign Yes OFF ON, OFF BOOL

8 ErrorlD Error code Yes 0 0-65535 HSIO_ERROR

3. Function description

The MC_Home_P instruction is used to perform homing on a local pulse-output axis (the homing program is
executed on the controller side) and is triggered on the rising edge.

This command can be called only by switching the axis to the enabled state using the MC_Power command.

On therising edge of the instruction, the function block locks the Position input parameters, the axis
processes the Homing state and performs the homing motion. Position is used to set the origin offset, and
parameters such as homing mode are set in the axis configuration interface.

In simulation mode, this instruction starts homing immediately.
This instruction does not support the mutual interruption between functional blocks.

After calling this instrcution, you can call the MC_Stop and MC_Halt commands to stop the axis from
running.

If the homing operation exceeds the homing timeout, the axis enters the ErrorStop state, and the function
block reports a timeout error.

4. Controller homing mode

There are four types of signals related to homing modes, namely: positive limit switch (POT), negative limit
switch (NOT), reference point switch (Index), and encoder Z signal. See below for specific meanings of
homing modes:

202512 (V1.1) 282

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Homing
method

Start
direciton

Target
position

Reference
position

Detailed description

Negative

NOT

Z pulse

Motor Z signal

Negative limit signal

Deceleration point signal

invalid at Homing start

Deceleration point signal

active at Homing start

Positive

POT

Z pulse

enat
Motor Z sig

Positive Limit Signal

Deceleration point signal

invalid at Homing start

Deceleration point signal

active at Homing start

Positive

Index

Z pulse

Motor Z signal

Origin switch signal

Deceleration point signal

invalid at Homing start

Deceleration point signal

active at Homing start

Positive

Index

Z pulse

Motor Z signal

Origin switch signal

Deceleration point signal

L

|

invalid at Homing start

Deceleration point signal
active at Homing start

R S A

Negative

Index

Z pulse

Motor Z signat

Origin switch signal

Deceleration point signal
invalid at Homing start

Deceleration point signal
active at Homing start

Negative

Index

Z pulse

Motor Z signal

Origin switch signal

Deeeleration point signal
invalid at Homing start

Deceleration point signal

active at Homing start

202512 (V1.1)

283

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Homing
method

Start
direciton

Target
position

Reference
position

Detailed description

Positive

Index

Z pulse

Motor Z signal

Positive Limit Signal

N i 1

I 1

. L I 1
Deceleration point signal invalid 1
I

Origin switeh signal :
I 1
| i
I 1
| |
I 1
| i

at Homing start, Positive limit
switch not encountered

Deceleration point signal invalid

at Homing start, Positive limit

Deceleration point signal

active at Homing start

Positive

Index

Z pulse

Moter Z signal

4—/ T
i
L 1
1
i
1
i
]
switch encountered ﬂ
! 1
1

I

’—‘j\
|
I

Origin switch signal

Positive Limit Signal

/ \} i
Deceleration point signal invalid 1
|
|

at Homing start, Positive limit
switch not encountered _u/

1
Deceleration point signal invalid /} }

at Homing start, Positive limit T
switch encountered \l I

1
int si g
Deceleration point signal L
active at Homing start T
\ /

Positive

Index

Z pulse

I
Motor Z signal | L

Origin switch signal

Positive Limit Signal

Deceleration point signal invalid

at Homing start, Positive limit

N /
switch not encountered i "
Ll
Deceleration peint signal invalid }\
at Homing start, Positive limit T
switch encountered AR

Deceleration point signal
active at Homing start

10

Positive

Index

Z pulse

Origin switch signal

Motor Z signal [
1
I
i
I
[
1
1
i

Positive Limit Signal

i
1
1
i
Deceleration point signal invalid |

at Homing start, Positive limit
switch not encountered

L
Deceleration point signal invalid /

i
i

at Homing start, Positive limit T
switch encountered }

i

Deceleration point signal

active at Homing start

11

Negative

Index

Z pulse

Motor Z signal

o signal
Negative Limit switch signal

Deceleration pomt signal mvalid at Vo
Homing start. Negative limit - 1
switch not encountered \ !

[\ ! "
i
i |
Deceleration point signal ivvalid at]
Homing start. Negative Limit 1 7 +
switch encountered \ / 1
e I |
Lo

Deceleration point signal active
at Homing start

202512 (V1.1)

284

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Homing
method

Start
direciton

Target
position

Reference
position

Detailed description

Motor Z signal

12 Negative | Index Zpulse Y y
\ . /
Mo/
e
Deceleration point signal active VAT
at Homing start) /.’
el
Motor Z signal 1
-
13 Negative Index Z pulse N 7
] N /
A
W
=
Deceleration point signal active ; "
at Homing start I 4{
Mator Z signal
14 Negative Index Z pulse i ;
b i ‘ R
N, :
Deceleration point signal active)
at Homing start . 7
Negative limit switch
L
. Deceleration point signal invalid =
17 Negative NOT NOT at Homing sar }

L

Deceleration point signal active |

at Homing start

18

Positive

POT

POT

Positive limit switch

Deceleration point signal invalid
at Homing start

Deceleration point signal active

at Homing start

19

Positive

POT

POT

Origin switch signal

Deceleration point signal invalid

at Homing start

Deceleration point signal active

at Homing start

202512 (V1.1)

285

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Homing
method

Start
direciton

Target
position

Reference
position

Detailed description

Origin switch signal

)

Deceleration point signal invalid
at Homing start

20 Positive Index Index

S . o
Deceleration point signal active

at Homing start

n switch signal —8@ —— |

The deceleration point signal
is invalid when the return to
Zero Starts

21 Negative Index Index

The deceleration point signal is
valid when the zero-back starts

Origin switch
signal

The deceleration point signal
is invalid when the return to

1
i
i
i
1
i
T
Zero starts 1 I 1
| -«
i
i
i
i
i
i

22 Negative Index Index

The deceleration point signal is
valid when the zero-back starts i/

Origin switch signal

Positive Limit Signal

The deceleration point signal is invalid when the
return to zero starts, and the positive limit switch

|
is not encountered s]
i)
I ! |
When the deceleration point signal ! ! !
I

23 Positive Index Index

when the return to zero starts, the pesitive limi
switch is encountered

The deceleration point signal is valid
when the zero-back starts

Origin switch signal

Positive Limit Signal

The deceleration point signal is invalid /
when the return to zero starts, and the
positive limit switch is not encountered

24 Positive Index Index

When the deceleration point signal is
invalid when the return to zero starts, the
positive limit switch is encountered

The deceleration point signal is
valid when the zero-back starts 1

Origin switch signal ————————————

Positive Limit Signal

The deceleration point signal is invalid /
when the return to zero starts, and the
positive limit switch is not encountered

25 Positive Index Index

When the deceleration point signal is
invalid when the return to zero starts, the
positive limit switch is encountered

The decel point signal is
valid when the zero-back starts

202512 (V1.1) 286

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Homing
method

Start
direciton

Target
position

Reference
position

Detailed description

26

Positive

Index

Index

Origin switch signal

Positive Limit Signal

The deceleration point signal is invalid

when the return to zero starts, and the
positive limit switch is not encountered

When the deceleration point signal is
invalid when the return to zero starts, the

positive limit switch is encountered

Y____;_. SR S

The deceleration point signal is
valid when the zero-back starts

27

Negative

Index

Index

Origin switch signal

Negative limit signal

The deceleration point signal is invalid
when the retum to zero starts, and the

negative limit switeh is not encountered

‘When the deceleration point signal is
invalid when the return to zero starts, the

negative limit switch is encountered /

The deceleration point signal is

valid when the zero-back starts

28

Negative

Index

Index

Origin switch signal

Negative limit signal

The deceleration point signal is invalid
when the return to zero starts, and the

negative limit switch is not encountered

When the deceleration point signal is

invalid when the return to zero starts, tt
negative limit switch is encountered

The deceleration point signal is
wvalid when the zero-back starts

29

Negative

Index

Index

Origin switch signal

Negative limit signal

The deceleration point signal is invalid

IR

‘when the return to zero starts, and the
negative limit h is not encountered

J
T~

When the deceleration point signal is
invalid when the return to zero starts, th

-

7'

" . N I
negative limit switch is encountered _/
H

The deceleration point signal is

SR . A

valid when the zero-back starts

PR’
N

30

Negative

Index

Index

Origin switch signal

Negative limit signal

when the return to zero starts, and the

i
|
‘The deceleration point signal is invalid !
T
negative limit switeh is not encountered .

When the deceleration point signal is
invalid when the retum to zero starts, th

negative limit switch is encountered

i
|
|
|
i

The deceleration point signal is |

valid when the zero-back starts !
T
|

202512 (V1.1)

287

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Homing Start Target | Reference . ..
.. e .. Detailed description
method | direciton | position | position
Motor Z signal
33 Negative | Zpulse Z pulse :
HomeMode33 !
1 g
Motor Z signal
34 Positive Z pulse Z pulse | i
| e
HomeMode34 : !
3 Current Current Homing mode 35: Use the current position as the
position | position | mechanical origin and perform homing.
< Note:

® Homing modes 1-14 correspond one-to-one with homing modes 17-30 (modes 1-14 include an

additional step using the Z pulse as the reference point signal). Both use the rising or falling edge of the

reference position signal to complete homing. Homing modes 33 and 34 use only the motor Z pulse

signal as the homing reference signal. For homing mode 35, the current position is directly taken as the

home position.

® The origin signal, positive and negative hard limit signals, homing mode, and homing-related

parameters (homing direction, homing velocity, and so on) should be set on the upper computer.

Homing mode Applicable scenarios
1 Positive limit signal + motor Z signal
2 Negative limit signal + motor Z signal
3,4,5,6 Home signal + motor Z signal
7,8,9,10 Positive limit signal + motor Z signal + home signal
11,12,13,14 Negative limit signal + motor Z signal + home signal
17 Negative limit signal
18 Positive limit signal
19, 20, 21,22 Home signal
23,24,25,26 Negative limit signal + home signal
27,28,29,30 Positive limit signal + home signal
33,34 Motor Z signal
35 No reference signal

£ Note: The selection of homing mode depends on the homing reference signals available on site.

5. Multiple start instructions

During the validity period of the Busy signal of the MC_Home instruction, if the second MC_Home instruction

is triggered, the system displays that the first instruction is executed normally and the second instruction

has an error.

6. Timing diagram

When this instruction is enabled, the driver performs the homing action normally.

202512 (V1.1)

288

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Execute

Done

Busy

CommandAborted

Error

ActVelocity T

/

»
>

During the homing process, the home instruction is interrupted by the MC_Stop instruction.

Execute

Done

Busy

CommandAborted

Error

SetVelocity T

Use MC_Stop

During the homing process, the driver experiences a fault.

Execute

Done

\4

Busy

CommandAborted

Error

ErroriD [

: X

ErrorID

)

#"Note: The position signals required for dedicated homing (hardware configuration) should be configured

in the PulseAxisConfig device.

202512 (V1.1)

289

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

ey e e - —
’[m PulseAxisConfigh (PulseAxisConfig)]
M/ Pulse_Axis_0 (Pulsefxis)
=[] pulseaxisConfig! (PulseAxisConfig) | Pulse axs config = Srect
ulse + Direction ~
47 Pulse_axis_1 (Pulsefxis) Output made
/0 Mapping
= m PulseAxisConfig2 (PulseAxisConfig)] 2 signal
signa
H2P Pulse_Asxis_2 (PulseAsxis) [EC Objects
3 softMotion General Axis Pool
Status [[] Home signal NO NC
Infi i
nrormston [Hard F Limit N NC
[J Hard N Limit NO NC
[probo
[] Probi

Other parameters dedicated to homing are configured in the Pulse_Axis device.

(i) PulseAxisConfig0 (PuiseAxisConfig)

W5’ Puise_Axs 0 (PuseAxis)

) PuiseAxisConfig1 (PuiseAxisConfig)
Home setting
WS Pulse_Axis_1 (PulseAxis) Home mode Home mode 35 v Home approachspeed |5 unit/s

@ PuiseAxisConfig2 (PuiseAxisConfig) Scaling setting

' Pulse_Axis 0

NS Puse_Axis_2 (PulseAxs) Home max time 60 s Home spped 20 unit/s

SoftMotion General Axis Pool General

Home acceleration 50 unit/s? Home jerk 0 unit/s~3
Commissioning

9.3.3 MC_MoveFeed_P

1. Instruction format

Instruction Name Graphical Representation ST Representation
MC_MoveFeed_P(
Axis:=,

Execute:=,
Position:=,
Velocity:=,
Acceleration:=,
Deceleration:=,

Jerk:=,
s e Danel— Direction:=,
—{Execute nFeedf—
Interrupted | “pestie o] MoveMode:=,
—{velocity CommandAbortedf—
fixed-length | e s Interrupt:=,
—Jerk .
MC_MoveFeed_P feed —J[pirecion i=Positve] FeedDistance:=,
function | Jrciee FeedVelocity:=,
—{FeedVelacity
block sy WindowOnly:=,
—LastPosition . oy
~Ierormode FirstPosition:=,

LastPosition:=,
ErrorMode:=,
Done=>,

InFeed=>,

Busy=>,
CommandAborted=>,
Error=>,

ErrorID=>);

202512 (V1.1) 290

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

2. Associated variables

Instruction MC_MoveFeed_P-Interrupted fixed-length feed
Name
No. Name Description Nullable |Default| Range Data Type
1 Axis Encoder axis No - - AXIS_REF_PULSE
_INVT
2 Execute |Rising-edge trigger Yes OFF | ON, OFF BOOL
3 Position Axis pos!tlon after homing Yes 0] LREAL
completion
. . Positive
4 Velocity [Target velocity Yes 0 LREAL
number
. . Positive
5 Acceleration |Acceleration Yes 0 LREAL
number
. . Positive
6 Deceleration |Deceleration Yes 0 LREAL
number
Jerk value
0: T-type acceleration and Positive
7 Jerk deceleration Yes 0 number/ LREAL
>0: S-type acceleration 0
and deceleration
Direction
In case of Mode=0 and
circular mode:
0: Positive
8 Direction L N'eg'atlve) Yes 0 0-3 INT
2: Minimum distance
3: Current direction
In case of Mode=2:
0: Positive
1-3: Negative
Mode
0: Absolute positioning
9 ModeMode mode . o Yes 0 0-2 INT
1: Relative positioning
mode
2: Velocity mode
Interrupt source selection
10 Interrupt |0: Probe 1 Yes 0 0-1 INT
1: Probe 2
Displacement after
reaching interrupt source
Positive: After the
interrupt source is
reached, the axis runs for Positive/
11 FeedDistance |the distance specified by Yes 0 negative LREAL
FeedDistance in the /0

direction of original
motion

Negative: After the
interrupt source is

202512 (V1.1)

291

INVT Medium and Large-Scale PLC Programming Manual

Communication Instructions

Instruction .
MC_MoveFeed_P-Interrupted fixed-length feed
Name
No. Name Description Nullable |Default| Range Data Type
reached, the axis slows
down to zero first, and
then runs for the distance
specified by FeedDistance
in the opposite direction
of the original motion
. |Target velocity after Positive
12 FeedVelocity L) Yes 0 LREAL
reaching interruption number
Enable interrupt source
window
0: Disable windo
13 | WindowOnly | - o> € Winaow Yes | OFF |ON/OFF BOOL
detection function
1: Enable window
detection function
- . Positive/
. ... |Start position of interrupt .
14 FirstPosition . Yes 0 negative LREAL
source window
/0
. . Positive/
... |End position of interrupt .
15 LastPosition . Yes 0 negative LREAL
source window
/0
Fault mode
OFF: If the probe signal
has not yet arrived after
the position specified by
Position is reached, the
instruction does not
report an error and
16 ErrorMode |continues to wait for the| Yes OFF | ON/OFF BOOL
probe signal
ON: If the probe signal has
not yet arrived after the
position specified by
Position is reached, the
function block reports an
error
17 InFeed Interrupt signal validity Yes OFF | ON/OFF BOOL
18 Done Valid state Yes OFF |ON, OFF BOOL
19 Busy Executing Yes OFF |ON, OFF BOOL
20 Active Execution validity flag Yes OFF | ON/OFF BOOL
Command o
21 Execution interrupt flag Yes OFF | ON/OFF BOOL
Aborted
22 Error Error sign Yes OFF |ON, OFF BOOL
23 ErroriD Error code Yes 0 0-65535| HSIO_ERROR

3. Function description

This instruction only supports the pulse axis, the rising edge updates function block parameters, and pulling

down the module does not interrupt the existing motion. When used with pulse axes, the probe signal

source must be bound on the pulse axis configuration interface (the signal source may be a local input or an

202512 (V1.1)

292

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

input from an expansion module, which can be refreshed using the refresh button shown in the figure).

= ﬂj Counterd (HispeedCounter)
T B Encoder_0 (Encoder)
= ﬁ PulseAxisConfigd (Pulse_Axis_Config)

=L FL1001_1600D1 DIO 10 %1X20. ! E E e (] l-P E \l

= ‘] (] FL1001_1600D1 (FL 1001-1600DT)

Before the interrupt signal arrives, the motion is executed according to the MoveMode parameter:
MoveMode=0: Absolute motion; MoveMode=1: Relative motion; MoveMode=2: Velocity mode motion

Direction can take effect in the following two modes: Mode=0, where the axis is set to circular mode, and its
motion mode is consistent with the description in MC_MoveAbsolute; Mode=2, where Direction=0 means
clockwise and Direction=1 means counterclockwise.

FeedDistance represents the distance traveled after the interrupt signal arrives, where a positive number
indicates that the axis moves for the specified distance in the direction of the original motion after the
interrupt source arrives, while a negative number indicates that the axis first slows down to zero and then
moves the specified distance in the opposite direction of the original motion after the interrupt source
arrives.

In case of WindowOnly=TRUE, the window function is enabled, and the probe signal can be detected on
when the current position is within the window (the window size is determined by the parameters
FirstPosition and LastPosition).

In the linear mode, the valid window range should satisfy FirstPosition < LastPosition; otherwise, a window
configuration error is reported.

In the circular mode, FirstPosition and LastPosition must both be less than the rotation period
fPositionPeriod and must not be equal; otherwise, a window configuration error is reported.

® |n case of FirstPosition_p<LastPosition_p, the valid window range is shown in the figure below.

O/revolution
e P FirstPosition_P

\‘ LastPosition P

® |n case of FirstPosition_p>LastPosition_p, the valid window range is shown in the figure below.

0O/revolution Window

FirstPosition_P L range
\
O\

fAC N Y

N O S B

\] /

N

—

\

\

'LastPosition_ P

When MoveMode=0 or MoveMode=1 is configured, if the probe signal has not arrived after the distance is
completed, the system takes the corresponding action depending on the value of ErrorMode: in case of
ErrorMode=FALSE, it keeps the Busy state and continues to wait for the probe signal; in case of
ErrorMode=TRUE, it reports an error.

202512 (V1.1) 293

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

4. Resetting the instruction

If the same instruction is triggered again during the validity period of its Busy signal, it re-plans the motion
according to the new configuration parameters.

5. Multiple start instructions

When multiple instructions call the same axis, if the next instruction is triggered during the Busy signal
validity period of the previous instruction, the next instruction will take effect, and the previous instruction
will be interrupted and invalidated.

6. Timing diagram

® When the relative positioning and absolute positioning modes are selected, the motion ends without
triggering an interrupt signal, and ErrorMode is OFF.

Execute

Done
Busy Keep monitoring theiprobe signal
— when Busy is high
InFeed H)
CommandAborted

Error

Velocity

variation plotI /

® \When the relative positioning and absolute positioning modes are selected, the motion ends without
triggering an interrupt signal, and ErrorMode is ON.

r 4

Execute

Done
Busy Keep monitoring theiprobe signal
— when Busy is high
InFeed H)
CommandAborted

Error

Velocity

variation plotI /

202512 (V1.1) 294

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

® When the relative positioning, absolute positioning, and velocity modes are selected, an interrupt
signal arrives during the motion.

Execute

Done

Busy

InFeed

CommandAborted

Error

Interrupt ; ﬂ
input ; :

Velocity T /

variation plot

® An error occurs during the command execution.

Execute

Done

Busy

InFeed

CommandAborted

Error

ErrorlD [>:< X]
9.4 PWM (Pulse Output)

9.4.1 Instruction List

Command Category Name Function
. . Pulse output function with
PWM output instruction HSIO_PWM . .
adjustable pulse width

9.4.2 HSIO_PWM

1. Instruction format

Instruction| Name Graphical Representation ST Representation
HSIO_PWM(
Enable:=,
Pulse
outout OutPutPort:=,
p. R GRS _ PulsePeriod:=,
function | —fEnable InVelocity}— i
HSIO_PWM . —{[OutPutPort 1= 4] Busy}— PulseWidth:=,
block with —PulsePeriod Errorfp— InVelocity=>
adjustable | —{Pulsewidth ErrorIDl— Y=,
. Busy=>,
pulse width
Error=>,
ErrorID=>);

202512 (V1.1) 295

INVT Medium and Large-Scale PLC Programming Manual Communication Instructions

2. Associated variables

Instruction
Name HSIO_PWM: Pulse output instruction with adjustable pulse width
No. Name Description [Nullable| Default| Range Data Type
1 Axis Encoder axis No - - AXIS_REF_PULSE_INVT
Rising-edge
2 Enable . Yes OFF ON, OFF BOOL
trigger
3 OutPutPort Output port Yes 0 4/5/6/7 UINT
4 PulsePeriod PWM period Yes 0 5-65535 UINT
PWM pulse
5 PulseWidth P Yes 0 | 2-65535 UINT
width
InVelocity Valid state Yes OFF ON, OFF BOOL
8 Busy Executing Yes OFF ON, OFF BOOL
9 Error Error sign Yes OFF ON, OFF BOOL
10 ErrorlD Error code Yes 0 0-65535 HSIO_ERROR

3. Function description
When Enable=0ON, Busy=0N, InVelocity=ON, and PWM pulses are output.
When Enable=0FF, Busy=0OFF, InVelocity=OFF, and PWM pulse output stops..

When PulsePeriod < PulseWidth, the function block reports an error (PWM pulse width exceeds the pulse

period).
#Note: The PWM output port (OutputPort) specified in the figure below should be enabled before use.
HSIO Setting High speed counter
10 Mapping Counterl [] Countert [] Counter2 [] Counter3
IEC Objects Counterd = xq [counter4 [Counters [Counters [counter? Y0 — Pulse axis0 Fulse

APhase
imms Counterl — X1 Pulze axis Y1 |— Pulse axis0 Direction

BPhase
Information) Pulse axis0 Pulse axis1 Pulse axis2 [] Pulse axis3

Pulse axis0 — x2 V2 |— Pulse axis1 Pulse

Prob0
Filter (0. 25 us)
Counter) — 4=

Probo xoo 2 B xi: 2 [xe: (o000 1] e [z00m0 2 ¥3 7 Pulse axis1 Direction
Pulse axis) — ya
Probl ¥4: [20000 [&] w5: (20000 [2| xs: 20000 2] x7: (20000 % ve |— pulse axis2 Pulse
General input —
s * Status after ple stop . . _—
preset value) . X , ¥5 |— Pulse axis2 Direction
General input - X6 () Keep output
FALSE | | FALSE | | FALSE | | FALSE e
¥6 |— Counter Compare out
(®) Output preset value
General input = X7 4 5 6 7
FALSE | FALSE |FALSE| |FALSE Y7 — PwWM
Interrupt input
o fABloe FAif oe f3Bloe £ 1E |
PWM4 PWMS5
e fiBos FiBlos f i Bor 5 1 H
PWME PWM7

202512 (V1.1) 296

INVT Medium and Large-Scale PLC Programming Manual

Fault Codes

10 Fault Codes

10.1 SMC_ERROR Fault Codes (General Error Information for 402 Axis)

Error . N
Module ENUM Variable Description
Number
0 All function blocks SMC_NO_ERROR No error
icati .F
. SMC_DI_GENERAL_COMMUNI Communication e'rror or
1 Drivelnterface example, sercos ring has
CATION_ERROR
broken
2 Drivelnterface SMC_DI_AXIS_ERROR AXis error
. SMC_DI_SWLIMITS_EXCEEDE [Position output within the
10 Drivelnterface oo
D allowed range (SWLimit)
. SMC_DI_HWLIMITS_EXCEEDE
11 Drivelnterface b Hard limit switch is active
. SMC_DI_HALT_OR_QUICKSTO|Drive status Halt or Quickstop
13 Drivelnterface .
P_NOT_SUPPORTED is not supported
14 Drivelnterface SMC_DI_VOLTAGE_DISABLED [The drive is not enabled
Current position given from
. SMC_DI_IRREGULAR_ACTPOSI|the drive seems to be
15 Drivelnterface .
TION irregular. Check the
communication.
Position lag error. Difference
16 Drivelnterface SMC_DI_POSITIONLAGERROR bet\./v.een setand curreht
position exceeds the given
limit
20 All motion generating | SMC_REGULATOR_OR_START |The controller is not enabled
function blocks _NOT_SET or the brake is applied
21 Axis in wrong controller |SMC_WRONG_CONTROLLER_ |The axis is under wrong
mode MODE controller mode
The module created by
. SMC_FB_WASNT_CALLED_DU |motion control is not called
30 Drivelnterface .
RING_MOTION before the motion is
completed
The gi AXIS_REF iable i
31 All function blocks SMC_AXIS_IS_NO_AXIS_REF | - &lVen AR>S REFvanabie s
not of the type AXIS_REF
L. AXIS_REF variables have been
Axis in wrong controller SMC_AXIS_REF_CHANGED_D .
32 changed while the modules
mode URING_OPERATION . .
being activated
The axis is not activated while
X SMC_FB_ACTIVE_AXIS_DIABL .
33 Drivelnterface ED moving
(MC_Power.bRegulatorOn)
34 All motion generating SMC_AXIS_NOT_READY_FOR_ |Axis in its current state cannot
function blocks MOTION ex